@ﬁ% Pitfalls in Embedded Software

g%? %g ..and how to avoid them

FKTHE

VETENSKAP
39 OCH KONST 9% Sagar Behere

L 31 March 2014

Pitfalls in Embedded Software 1/19

What is wrong with this code?

unsigned int count = BigValue;
for (int i = 0; i < count; i++) {

3’

Pitfalls in Embedded Software 2/ 19

Who am I?

o 10+ years of systems development

o Diesel engines, traction control, autonomous driving

o Robotics, artificial intelligence, unmanned aerial vehicles

Pitfalls in Embedded Software 3/19

What will | talk about?

@ Inconsistent bugs
@ How to debug
© Take-home puzzles

Pitfalls in Embedded Software

4/19

Race conditions

Thread 1: Thread 2:

global_counter += 1; global_counter = 0;

What if the increment operation cannot be performed atomically?

Best practices:
@ Surrounded critical sections by preemption limiting mechanisms
o For ISRs: Interrupt must be disabled
o For RTOS Tasks: Mutexes

Tip
Look up Scoped Mutexes

Pitfalls in Embedded Software

5/19

Non-reentrant functions

Driver

Ethernet
controller

ETH driver functions MUST manipulate the same global objects!

Best practice:
o Use Mutexes

o But is that sufficient?

Pitfalls in Embedded Software

6/19

Missing volatile keyword

g_alarm = ALARM_ON;
//

// Code that does not access g_alarm

//
g_alarm = ALARM_OFF;

What happens when compiled with optimization enabled?

Best practices: Use volatile to declare every

o Global variable accessed by an ISR

Global variable accessed by two or more RTOS tasks

o Pointers to memory-mapped registers

Delay loop counters

Pitfalls in Embedded Software 7/ 19

Stack overflow

o Effects and timing both unpredictable
o Embedded systems are especially vulnerable

o Limited RAM. No virtual memory

o RTOS based designs typically have one-stack-per-thread; each must
be correctly sized

o Interrupt handlers may try to use those

Best practice:
@ During init, paint an unlikely memory pattern throughout the stack.

@ During runtime, supervisor task periodically checks for 'scratches in
the paint’ above a 'high water mark’

Pitfalls in Embedded Software 8/ 19

Heap fragmentation

@ Start with a 10KB heap

@ malloc() two blocks of 4 KB
O free() one of the blocks

O malloc() a block of 6 KB

What will happen?

Best practice:

o All memory requests should have the same size.

Pitfalls in Embedded Software

9/19

Memory leaks

o Number of malloc()s does not match number of free()s

int *x;
x = malloc(sizeof(int));
*x = 100;

o Why is the above code dangerous?

Best practice:

o Design patterns: Clearly define ownership pattern or lifetime of each
type of heap-allocated object.

o Valgrind!!!

Pitfalls in Embedded Software 10 / 19

Deadlocks

Mutex A

Mutex B

Best practices:
o Do not attempt simultaneous acquisition of two or more mutexes

o Assign an ordering to all mutexes. Always acquire multiple mutexes
in that same order

Pitfalls in Embedded Software 11/ 19

Priority inversion

blocked
T ‘h 7 N
1 ! 1
1 H 1
P ;

I

.

T

%
I Hormal Execution Critical Section

Not always reproducible

Best practice:
@ Choose RTOS that has priority-inversion work-arounds in its API

@ Do not forget execution time cost of work-around

Pitfalls in Embedded Software 12 / 19

Jitter

An example of jitter in the timing of a 10-ms task.

>10ms <« <10ms
<10ms

1 1 EEN

Figure 3

Best practice: Set correct relative priorities .. or cheat!

litter is affected by relative priority.

10 ms
- | | |
10ms —wom 10ms
1L I N [
> 10ms W‘ <10ms

- I e

Figure 4

Pitfalls in Embedded Software

13/ 19

A scientific approach to debugging

@ Verify the bug, determine correct behavior
@ Stabilize, isolate, minimize

@ Can you make the bug appear consistently?
@ What is the minimum input needed to make it appear?

© Estimate a probability distribution

Compiler bug

S9N MY e ooced wire

Other

Bug in partner's code Software bug

Bug in our software

Pitfalls in Embedded Software 14 / 19

A scientific approach to debugging

@ Devise and run an experiment

© lIterate - but remember to change one thing at a time
@ Fix bug, verify fix

@ Undo changes

O Find the bug's parents, friends and relatives

Pitfalls in Embedded Software 15 / 19

If you are stuck

What if the probability distribution looks like this?

Something very weird

o Take a break o Reduce size of failure-inducing input
o Talk with someone o Find a tool to bring out more
information

o Sit and stare at the
code

Pitfalls in Embedded Software 16 / 19

Take home puzzle #1

1 #tinclude <iostream>

2 ftinclude <string>

3 using namespace std;

4 int main(void)

54

6 string s = "abc";

7 char delim = "';

8 unsigned int position = s.find(delim);

9 // if no matches are found, find() returns string::npos, else position of delim
10 // see http://www.cplusplus.com/reference/string/string/find/
11 if(string::npos |= position) {

12 cout << delim << " FOUND in " << s << endl;

13 G}else{

14 cout << delim << " NOT FOUND in " << s << endl;
15

16 return 0;

17 3}

Pitfalls in Embedded Software 17 / 19

Take home puzzle #2

#tinclude <stdio.h>

main(t, ,a)

char xa;

{return!0<t?t<3?main(—79,—13,a+main(—87,1— _,

main(—86, 0, a+1)+a)):1,t<_?main(t+1, , a):3,main (—94, —27+t, a

)&&t == 27 <13 ?main (2, +1, "%s %d %d\n"):9:16:t<0?t<—72?main(_,
£."On'+ #' [+ {Iw+/witcdnr/+ {}r/xde}+, [«{+ [w{%+ [wH#a#tn+, /#{l.+ /n{n+\
A+ [#E#afEn [k, [A3 H{wH K wK: Tedt dq#E| gt +d KL\
+k#;a# rreKK#w'rteKK{nl]'/#:#tqtn’) {)# 3w){){nl]'/+#n"d}rw’ i;#){n\
N/n{n#"; H{#tw'r nednl]' /#{1,+'K {rw" iK{[{nl]'/wita#\

n'wk nw' iwk{KK{nl]!/w{%'I##w#" i; {nl]'/«{a#'Id;r'}{nlwb!/xde}'c \
s{nl={3rw]' [+ 3 e, FEnw] [+kd +e}+;\

#'rdagw! nr'/) FHHrl#E{n")# P+ EE(N/")

t<—507 _==sxa ?putchar(a[31]):main(—65, ,a+1):main((xa == "/")+t, ,a\

+1):0<t?main (2, 2, "%s"):xa=="/"||main(0,main(—61,*a, "lek;dc \
iObK'(q)—[w]*%n+r3#I {}:\nuwloca—O;m .vpbks,fxntdCeghiry"),a+1);}

Pitfalls in Embedded Software 18 / 19

References & further reading

Material in these slides has been taken from..

o Embedded.com: Five top causes of nasty embedded software bugs

o Embedded.com: Five more top causes of nasty embedded software
bugs

@ John Regehr's blog post: How to debug?

..you really should read those articles!

Pitfalls in Embedded Software 19 / 19

http://www.embedded.com/design/prototyping-and-development/4008917/4/Five-top-causes-of-nasty-embedded-software-bugs
http://www.embedded.com/electrical-engineer-community/industry-blog/4210308/4/Five-more-top-causes-of-nasty-embedded-software-bugs
http://www.embedded.com/electrical-engineer-community/industry-blog/4210308/4/Five-more-top-causes-of-nasty-embedded-software-bugs
http://blog.regehr.org/archives/199

