e

B,
EFKTHS

VETENSKAP
S8 OCH KONST %

COPY

Prototyping Cyber-Physical Systems
A hands-on approach to the Cyber- part

Sagar Behere
23 June 2015
Kungliga Tekniska Hogskolan

Prototyping Cyber-Physical Systems
yping Ly Yy Y 1/45

Disclaimer

This presentation contains personal opinions

Prototyping Cyber-Physical Systems
yping Ly Yy Y 245

What does this program do?

#include <stdio.h>

main(t,_,a)

char xa;

{return!0<t?t<3?main(—79,—13,a+main(—87,1—_,

main(—86, 0, a+1)+a)):1,t<_?main(t+1, _, a):3,main (—94, —27+t, a

)&&t == 2 ?7_<13 ?main (2, +1, "%s %d %d\n"):9:16:t<0?7t<—727?main(_,
t,"On'+ #" /+{Iw+/w#cdnr/+ {}r/sde}+, /s {x+, /w{%+, /wH#a#n+, /#{l,+,/n{n+\
JE#ENE, J# RN+, [k x4,) d 3 H{wHK WK e# da# | q# A KH#/\
st r eI b T} eKK{nl] At Y4 w)) (nl] / +en' w146)\
t/n{nds e’ ne{nl]’ /404K {rw IKG L] wtiae\

n'wk nw’ iwk{KK{nl]!/w{%'I##w#" i; :{nl]'/x{q#'Id;r'} {nlwb!/xde}'c \

Y T v g s Al A

Ardagiwl nr/) EHAE (0) Y+ (")

't<—50?_==sxa ?putchar(a[31]):main(—65,_,a+1):main((xa == "/")+t,_,a\

+1):0<t?main (2, 2, "%s"):xa=="/"||main(0,main(—61,xa, "lek;dc \
i@bK'(q)—[w]*%n+r3#1,{ }:\nuwloca—O;m .vpbks,fxntdCeghiry”),a+1);}

Prototyping Cyber-Physical Systems
yping Ly Yy Y 3/45

Which systems are we talking about?

o Prototypes!!
o Validation of concepts

@ Your hobby projects

@ Projects you'll be involved in as researchers
o E.g.: EU FPY projects in robotics

@ Anything where it is not necessary to trim the system down to the
leanest possible

o in terms of hardware and software

Prototyping Cyber-Physical Systems
yping Ly Yy Y 4/ 45

Which systems are we talking about?

o Low quantities (not mass production) or one off designs
o Professional, certified tools not always available/used

@ Professional software shops not utilized

@ Multiple domain experts working on the project

o Most are not geed up-to-date programmers

@ No concerns about conformance to industrial safety standards or
product certification

Prototyping Cyber-Physical Systems
yping Ly Yy Y 545

Hardware scale

o Individual microcontrollers
o 8,16, 32 bit
o PIC, AVR,...

o Starter kits for above

o Typically with some peripherals on-board
o LEDs, keypads, pots, LCD display, ...

o Medium

o Typically based on ARM
o Beaglebone, Raspberry Pi, ...
o USB, ETH, WiFi,...

o Big league
o "Proper” Intel processors
o Core i7 etc.
o Small form factor, SSDs

Prototyping Cyber-Physical Systems
yping Ly Yy Y 6/ 45

Software scale

o Bare metal
o Tiny OSes

o Typically compiled into the application
o e.g. FreeRTOS, Erika Enterprise

o Big league

o Linux, Windows

Prototyping Cyber-Physical Systems

745

Proposition

Use the fattest stack possible
(and build up proficiency)

Use an operating system if at all possible

But think of i/o and realtime constraints

Prototyping Cyber-Physical Systems
yping Ly Yy Y 8 /45

Ethernet,
USB,
WiFi,

Bluetooth,
Cameras,
CAN,
XBee?

Suggested pattern

uC #1
FAT
STACK

uC #2
Low level

I/0

I

uC #3

REALTIME

Prototyping Cyber-Physical Systems

9/ 45

o Kernel space programming is hard
different

o Need to write drivers + user
libraries

o Think: Concurrency, blocking,
reentrancy,...

o Mistakes can crash entire system

o Debugging kernel more difficult

Why not low level i/o with Linux?

Kernel

Drivers

Application

i

Libraries

Situation different if you have good drivers available

Prototyping Cyber-Physical Systems

10 / 45

alp

F,
FKTHE

(%674 Hard vs Soft Realtime

o

o Hard realtime

o strict determinism
o bounded latencies
o guaranteed worst case timing
— Industrial control, automotive, avionics, medical

o Soft realtime

o Execute a task according to a desired time schedule on average
o Best effort
—>audio, video, VolP

[source: Detlev Zundel's CC-BY-SA licensed presentation 'The Xenomai Real-Time Development Framework']

Prototyping Cyber-Physical Systems
yping Ly Yy Y 11/ 45

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

Temporal determinism

o Simple microcontrollers are temporally deterministic. Given an
instruction sequence and the clock frequency, one can calculate the
execution time.

o Modern CPUs are not deterministic in this sense. Innovations like
caches, instruction scheduling, predictive execution, bus scheduling,
etc. make it impossible to calculate execution times even of small
instruction sequences. A paper at RTLWS11 showed that such
execution timings pass standard randomness tests! Although peak
performance increased by a factor of 20000 in the last 30 years,
worst case execution time decreased only by a factor of 200.

[source: adapted from Detlev Zundel's CC-BY-SA licensed presentation 'The Xenomai Real-Time Development

Framework’]

Prototyping Cyber-Physical Systems
yping Ly Yy Y 12/ 45

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

alp

F,
FKTHE

iR |s realtime needed?

o

@ What deadlines does the system have?

@ Does the system have to meet each and every deadline?

Can the system be split into a realtime and non-realtime part?

o Can the realtime constraints on software be eliminated by using
suitable hardware?

[source: adapted from Detlev Zundel's CC-BY-SA licensed presentation 'The Xenomai Real-Time Development

Framework']

Prototyping Cyber-Physical Systems
yping Ly Yy Y 13/ 45

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

S,
7d A fully preemptive kernel
Linux
Process
Real-Time
Task Linux
Process
User Space
Kernel Space

| Preemptive Linux Kemel |

'

| Hardware ‘

[source: adapted from Detlev Zundel's CC-BY-SA licensed presentation 'The Xenomai Real-Time Development

Prototyping Cyber-Physidaragyerans |
yping Cy ysicaragye 14/ 15

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

Degrees of preemption

‘Linux can be configured with different preemption models (in order of
increasing preemption and decreasing performance):
PREEMPT_NONE
no preemption, i.e. standard Unix behaviour (server
configuration)
PREEMPT _VOLUNTARY
explicit preemption points
PREEMPT
implicit preemption points

PREEMPT_RT
complete preemption (needs external patch)

[source: adapted from Detlev Zundel's CC-BY-SA licensed presentation 'The Xenomai Real-Time Development

Framework']

Prototyping Cyber-Physical Systems

15 / 45

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

alp

User
Space

Kemel
Space

Fon,
FKTH% . . .
(874 Xenomai Adeos/I-Pipe architecture
Linux process Linux process Linux process
(non-RT) (RT) (non-RT)
API calls
secondary primary
domain domain
Linux kernel (Root Thread) ‘ RT-Task
API calls IRQ
delayed IRQs ‘ Xenomai ‘
o]
7 RQ 1o
Adeos/l-pipe |
IRQ
Hardware

[source: adapted from Detlev Zundel's CC-BY-SA licensed presentation 'The Xenomai Real-Time Development

Prototyping Cyber-P hysic':aliag;g%%ié |

16 / 45

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

PREEMPT_RT vs Xenomai

Linux RT preempt Dual kernel approach

m Clear separation of RT and
non-RT domains. This usually
leads to cleaner designs. Good
RT performance.

m Easy for the software
developers as “real-time”
attributes can be adjusted after
the design by juggling priorities

m separate drivers are needed

m no need for separate drivers
m small code base, maybe even

m test suite must cover all kernel certifiable
configurations (i.e. modules) m supports also low-end
architectures (Blackfin, ARM,

m x86 centric
etc.)

[source: adapted from Detlev Zundel's CC-BY-SA licensed presentation 'The Xenomai Real-Time Development

Framework']

Prototyping Cyber-Physical Systems
yping Ly Yy Y 17/ 45

http://creativecommons.org/licenses/by-sa/2.0/
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments
http://video.rmll.info/videos/the-xenomai-real-time-development-framework-recent-and-future-developments

Application partitioning

Non-Realtime Realtime Non-Realtime
HMI Task 1 Filter Inputs
Logging Task 2 Filter Outputs

Prototyping Cyber-Physical Systems
yping Ly Yy Y 18/ 45

Simulink models

Don’t ask the control engineer to write the controller in
C++

o Code generation

o Hand "massaging” almost always needed
o Execution timing/jitter guarantees need to be assured < tough!

@ Direct execution

o dSpace

o xPC target

o Arduino

o Beagleboard (not realtime!)

Prototyping Cyber-Physical Systems
yping Ly Yy Y 19/ 45

Ethernet,
USB,
WiFi,

Bluetooth,

Cameras,
CAN,
XBee?

Therefore the suggested pattern

uC #1
FAT
STACK

uC #2
Low level

I/0

I

uC #3

REALTIME

Prototyping Cyber-Physical Systems

20 / 45

Therefore the suggested pattern

uC #2

Ethernet, Low level I/O

USB,
WiFi, uC #1
Bluetooth, FAT
Cameras,
CAN, STACK C s
XBee?
ALTIME

But there is an annoyance...

Prototyping Cyber-Physical Systems
yping Ly Yy Y 21/ 45

How will you send this?

struct {
uint8_t fix;
int32_t lat;
int32_t lon;
int32_t alt;

Communication

} t_gpsDataPayload;

gCC'S _attribute_((__packed_)) ¢

Then

never use -> or a pointer to the

struct

or this?

class gpsData {
private:

uint8_t fix;
int32_t lat;
int32_t lon;
int32_t alt;

public:

};

uint8._t getfix();
int32_t getlat();
int32_t getlon();
int32_t getalt();

Prototyping Cyber-Physical Systems

22 /45

Two aspects of communication

o Data transfer - protocols/mechanisms

o TCP, UDP
o Client/server, publish/subscribe, N-to-M, pipeline, ...

o Data packaging

o serialization/deserialization a.k.a marshalling/demarshalling
o wire protocols

Prototyping Cyber-Physical Systems
yping Ly Yy Y 23/ 45

Communication solutions

@ There are solutions that do both transfer and de/marshalling

o CORBA, DDS
o Typically big and heavy
o Good luck running them on a small microcontroller

@ Solutions for transfer only

o Transfer a binary blob of data. Don’t care what's inside it.
o Sender & Receiver need to know the actual data structure
o TCP/UDP client server is the traditional way BUT

o ZeroMQ is a modern way

@ Solutions for de/marshalling

o Google protocol buffers
o XML, JSON, BSON
o Boost serialization containers

Prototyping Cyber-Physical Systems
yping Ly Yy Y 24/ 45

Simulink direct execution

o Guess which modern communication methods are supported by
Simulink?

Prototyping Cyber-Physical Systems
yping Ly y Y 25 / 45

Simulink direct execution

o Guess which modern communication methods are supported by
Simulink?

o NONE!

@ You are left banging
bits together

Prototyping Cyber-Physical Systems
yping Ly Yy Y 25 / 45

Simulink direct execution

o Simulink supports UDP/TCP

o UDP — packet fragmentation. Data MUST be less than packet
size.

o TCP — Non deterministic
@ You need a simple protocol

o First 4 bytes — Message type

o Make sure to get endian-ness right

o Check padding of data structures

o Tip: Do the hard work in Simulink. At other side, use memcpy() to
copy into struct buffer

@ Maybe you could use the CAN bus

o Message frames usually restricted to 8 bytes

o If your data is uint64_t ...

Prototyping Cyber-Physical Systems
yping Ly Yy Y 26 / 45

Maximizing the fat stack

o If the hardware can run a proper linux distribution (e.g. emdebian)

o You have access to a gadzillion libraries..
o .. and a bazillion languages

o C, C++, Java, Python, Ruby, Scala, Haskell, Erlang, ...
@ Don't be afraid to use multiple languages

o Some language might have a library with the exact functionality you
need

o Switching from a procedural to functional language may solve a
sub-problem elegantly

o Some things are simply easier in high level languages (text
processing in C? Eeeek!)

o Learn Inter-Process Communication (IPC)

o Pipes, FIFOs, sockets, shared memory, mailboxes, queues

Prototyping Cyber-Physical Systems
yping Ly Yy Y 27 /45

aly

F,
FKTHE

¥4 Data |0ggl ng

el

o Data logging is not realtime [unless it is ;-)]

o Needs to be done from a non-realtime task
o Or preferably, on a separate computer

Typically, three things need to be logged

o Timeseries data + periodic
o Error, exception and non-error messages < event driven
o Data associated with errors and exceptions<— event driven

@ Periodic timeseries data size usually known in advance

o Event driven messages and associated data may have unknown size

Tip: Log data in open and interoperable formats

o Logs can be viewed in general purpose data analysis tools
o Formats like csv, netCDF, HDF5 are desirable
o Analyse in Matlab, GNU Octave, kst, Qtiplot or your own program

Prototyping Cyber-Physical Systems
yping Ly Yy Y 28 / 45

HMI and Calibration

@ GUI must run in a separate thread, or better, in an independent
process

o Receives data via IPC, typically sockets
o So HMI and calibration can run on different computer

o Make sure that received calibration data is sanitized!

o A useful pattern for displaying data in HMI

Data stream to be logged

HMI Data store

Prototyping Cyber-Physical Systems
yping Ly Yy Y 20 / 45

aly

S,
FKTHY
(5l Another useful pattern
Data
L Simulat
System ogger imulator
Publisher T T
Subscriber i i i
HMI HMI Data
Calibration Calibration Logger
#1 #2 #1

Concerns of data transfer and de/marshalling still valid

Prototyping Cyber-Physical Systems
yping Ly Yy Y 30 /45

A logging workaround

System

Database Object
client "| Database

Prototyping Cyber-Physical Systems
yping Ly Yy Y 31/ 45

Communication: ZeroMQ

Data transfer independent of platform and language
Carries messages across inproc, IPC, TCP, TPIC, multicast
Smart patterns like pub-sub, push-pull, and router-dealer
High-speed asynchronous 1/0 engines

Excellent documentation [which begins with the phrase, " Fixing the
World" ;-)]

Open source (LGPL with static linking exception), active community

http://www.zeromg.org

Prototyping Cyber-Physical Systems
yping Ly Yy Y 32/ 45

Communication: DDS

o Interoperable publish-subscribe with QoS

o Data transfer as well as packaging

o Fault tolerance (over unreliable media)

o http://www.opensplice.com , http://www.rti.com

NOT THIS:
(connection-oriented)

BUT THIS: Shared Operational Picture

SILIIITEITT

O = System Components

Prototyping Cyber-Physical Systems
yping Ly Yy Y 33/ 45

Clock synchronization

o If you have multiple computers in the system, the clocks often need
to be synchronized

o But try to avoid this as far as possible, via smart architecture
choices

For simple microcontrollers, possible to use global clock signal

ntpd can (theoretically) sync clocks within 232 picoseconds

You can even sync to GPS time, if your system uses a GPS

o But the gps device should have a PPS signal

Prototyping Cyber-Physical Systems
yping Ly Yy Y 34 /45

My three favorite platforms

Between them, they can take on practically anything

Prototyping Cyber-Physical Systems
yping Ly Yy Y 35 /45

FrTHE

1574 Beaglebone black (or white)

™

"10/100 Ethernet Power Button
DC Power LEDS
USBl Host Serial Reset Button
Easily connects USE Client

to almost any

everyday device Development interface

such and directly powers
as mouse A board from PC
or keyboard

. & 2GB on-board
cr.r;lcroHDMl ‘ / storage using
dlonnuec: 1 GHz Sitara eMMC

Iractly to | N : AM335x + Pre-loaded with
monitors S ARM® Angstrém Linux
and TVs Cortex™-A8 Distribution

. + 8-bit bus
E
:ep:‘r;:::n P*°°Fss°' accelerates
microSD Enable cape hardware Provides a performance
Expansion slot for and include: more + Frees the microSD
additional storage + 65 digital /O advanced user slot to be used for
» 7 analog interface and additional storage

512MB DDR3 - 4 serial up to 150% for a less
Faster, lower power = 2 8P| better expensive solution
RAM for . Boot . § EV{\:st performance than 8D cards
enhanced user-friendly Button « 4 timers than ARM11

experience = And much much more!

Prototyping Cyber-Physical Systems
yping Ly Yy Y 36 / 45

alp

F,
FKTHE

s 2 Beaglebone PRUs

o

Separate realtime processors on the silicon of main chip

PRU-ICSS

Dual 32-bit RISC cores,
shared data, instruction

memories and an interrupt wrm e[
controller (INTC)

g Inlertacal
L Fast _
B I

e B e
—

PRUO Care
(BKB Program RAM)

erl_onud_peu_ 3116
S B

-SKB da_ta memory and 8KB a“:“g 7 E
Instruction memory §__,c,—|
E e

PRU1 Care
(8K Program RAM)

12KB shared RAM

Ert_pnrt_peu_r1(163)

A small, deterministic e

To HoatASM Inemupes

instruction set ikt 7—’u_. o]

Prototyping Cyber-Physical Systems

37 /45

alp

BT,

FKTHE

VETENSKAP

B2 Arduino

o

o Easy, easy, easy
o Wide variety of devices

o Naturally realtime

o Matlab/Simulink integration makes it the poor man’s dSpace

ARDUIND
Data|—# data
g -
. . Desired Angke
Port 0
Serial Receive Serial to Angle
ARDUING
FAYAN uint18 ang
Messured Ange
Pin 0
pesmy— 10-bit toAngle

Package Serial Message

FIDiz) [

PID Controller

Analog Output {PWI)
Forward

ARDUING
Fin 10

ARDUIN]
bwd] i
Pin 11
Analog Output {PWIM)
Backward

Comvert to PWIM

ARDUING

Port 0

Serial Transmit

Prototyping Cyber-Physical Systems
yping Ly Yy Y 38 /45

§ KTH

%% ocw konst S

System
Builders

Component
Builders

Application
Builders

Framework
Builders

OROCOS

components

configuration

Commands

middleware

Data Flow
Ports

it
functions:

Dynamic
functions:
~Callbacks - State Charts
-Algorithms - Program

1 scripts

Configuration
Interface

Scripting Properties Inspection

[m] = =
Prototyping Cyber-Physical Systems

39 /45

aly

L,
%‘ KTH%
VETENSKAP
(7l OROCOS dataflows
B
@ connectPorts(A, C) ® connectPorts{A, C)
e
"MyData"
"MyData] MyData" "MyData'_>ijj_’ MyData"
W-Port R-Port W-Port R-Port
Task A Task C Task A Task C
connectPorts(A, MyData tPorts(A, D
connectPorts(A, D) connectPorts(B, C
"MyData"
"MyData MyData" "MyData' ‘_’CI:D:]_" MyData"
W-Port R-Port W-Port R-Port
Task B Task D Task 8 connectPorts(B, D) TaskD_ |

connectPorts(D, C)

“MyData2"
R-Port
Task C

connectPorts(D, A)

"MyData2"

"MyDataf’ JayDataz”
W-Port R-Port
Task D Task A

pMyData2"
R-Port
Task B

connectPorts(D, B)

Prototyping Cyber-Physical Systems
yping Ly Yy Y 40 / 45

Example: Autonomous maze solving
robot

Ball
Detector

Feature
Extractor

Sensor

Data
Data

Logger

Prototyping Cyber-Physical Systems
yping Ly Yy Y 41/ 45

Example: Robot motion control

Non Real-time Real-time

|
|
|
|
Scene |
Description i
i o 0 Interpolator
Client G !
Path Trajectory |
|
Robot |
g:,':e”;::f Description |
(A | Estimator
e.g.; Kalman
I Parameter ! Filter
“Dynamics b |
Manufacturer API Estimator ‘
|
|
Exception |
and Events
Processor ! Sensor Actuator
|
| \
|
|
Exteral | Robot
Visualization |
Program
€.g.: Peekabot |
|

Prototyping Cyber-Physical Systems
yping Ly Yy Y 42 /45

Some resources

@ "How fast is fast enough? Choosing between Xenomai and Linux for
realtime applications” - Brown and Martin

@ "The Xenomai real-time development framework: Recent and future
developments” - Detlev Zundel

o "Middleware trends and market leaders 2011" - Dworak et al
o ZeroMQ guide

o "DDS - Advanced Tutorial using QoS to solve real world problems”
- Gordon Hunt, OMG Real-Time & Embedded Workshop July 9-12,
Arlington, VA

o OROCOS component builders manual

Prototyping Cyber-Physical Systems
yping Ly Yy Y 43/ 45

Recap: What have we seen?

o A pattern for system partitioning

Two ways of achieving realtime with linux and their pros/cons

o Data communication - transfer and packaging

Data logging

Clock synchronization
@ Some useful platforms

OROCOS Middleware

Prototyping Cyber-Physical Systems
yping Ly Yy Y 44 / 45

Questions?

behere@kth.se

Prototyping Cyber-Physical Systems
yping Ly Yy Y 45 /45

