
Chapter 1

Systems Engineering and Architecting for
Intelligent Autonomous Systems

Sagar Behere and Martin Törngren

Abstract This chapter provides an overview of architecture and systems en-
gineering for autonomous driving system, through a set of complementary
perspectives. For practitioners, a short term perspective uses the state of the
art to define a three layered functional architecture for autonomous driv-
ing, consisting of a vehicle platform, a cognitive driving intelligence, and off-
board supervisory and monitoring services. The architecture is placed within
a broader context of model based systems engineering (MBSE), for which we
define four classes of models: Concept of Operations, Logical Architecture,
Application Software Components, and Platform Components. These classes
aid an immediate or subsequent MBSE methodology for concrete projects.
Also for concrete projects, we propose an implementation setup and tech-
nologies that combine simulation and implementation for rapid testing of au-
tonomous driving functionality in physical and virtual environments. Future
evolution of autonomous driving systems is explored with a long term per-
spective looking at stronger concepts of autonomy like machine consciousness
and self-awareness. Contrasting these concepts with current engineering prac-
tices shows that scaling to more complex systems may require incorporating
elements of so-called constructivist architectures. The impact of autonomy on
systems engineering is expected to be mainly around testing and verification,
while implementations shall continue experiencing an influx of technologies
from non-automotive domains.

Sagar Behere
KTH The Royal Institute of Technology, Stockholm, Sweden e-mail: behere@kth.se

Martin Törngren
KTH The Royal Institute of Technology, Stockholm, Sweden e-mail: martint@kth.se

1

2 Sagar Behere and Martin Törngren

1.1 Introduction

This chapter provides practical insights into specific systems engineering and
architecture considerations for building autonomous driving systems. It is
aimed at the ambitious practitioner with a solid engineering background. We
envision such a practitioner to be interested not just in concrete system imple-
mentations, but also in borrowing ideas from the general theory of intelligent
systems to advance the state of autonomous driving.

The practical development of autonomous driving systems involves do-
main specific algorithms, architecture, systems engineering, and technical
implementation, as shown in Figure 1.1. Of these, this chapter focuses on
the latter three. Architecture and its development may possibly be consid-
ered as a part of systems engineering, but for the purpose of this chapter,
we treat it as a distinct area. This is because of the extensive coverage of
architecture in the chapter. The arrows in Figure 1.1 represent an ”impact”
relationship. Thus, the arrow from architecture to systems engineering im-
plies that architecture has an impact on systems engineering. The impact
can be of various types, but the key point is that the practical development
of autonomous driving systems must holistically consider all the areas and
their impacting interrelations. Such a holistic view is not always within the
scope of researchers ”deep diving” into the specifics of a particular area. Nev-
ertheless, for practicing engineers and concrete projects, it can not (should
not) be ignored. This chapter presents the three areas within a holistic con-
text, with the aim of providing the practicing engineer with a grasp of key
concepts in each area, and how they all come together for autonomous driv-
ing. Within each area, references to more detailed topics are also provided.
This simultaneous consideration of three, typically disparate topics, is one
of the innovative aspects of this book chapter. Very often in research, the
technical aspects of the implementation are considered less important. In our
experience with autonomous driving, the technical implementation aspects
provide opportunities and strong constraints which must be considered dur-
ing the processes of architecting and systems engineering. This prevents gaps
imposed by ”reality” when transitioning between different concerns and a
subsequent weakness in the application of theoretical results. Therefore, this
chapter devotes a complete section to the core tools and technologies support-
ing architecting, systems engineering, and implementation. This is a second
innovative aspect of this chapter. The third innovation is an examination of
key results in the areas of machine consciousness and the theory of mind,
which are usually omitted from ”hardcore” engineering discussions, because
the gap between these areas and pragmatic, safety critical engineering is very
large. But by covering these areas, we show how it can influence and provide
guidelines for future developments in autonomous driving. The chapter de-
liberately emphasizes breadth of coverage rather than depth in one selected
topic, because we have noticed a conspicuous lack of literature in the field
that collects together the important considerations and topics relevant to the

Title Suppressed Due to Excessive Length 3

practicing engineer. It must be noted that some of the presented topics are
not exclusive to the development of autonomous systems, but gain significant
importance in that context.

Fig. 1.1 The areas in focus of this chapter

The chapter thus contributes with a series of takeaways in the areas of ar-
chitecture, systems engineering, technical implementation, and longer term
evolution of autonomous driving. For architecture, the reader will find ex-
plicit descriptions of key functional components needed for autonomous driv-
ing and a three layered reference architecture showing the distribution of
these components and their interconnections. For model based systems en-
gineering (MBSE), the chapter outlines four classes of models to aid MBSE
methodologies for concrete projects. The model classes may be viewed as a
lightweight complement to methodologies advocated by the ’V-model’ and
functional safety standards like ISO26262. For technical implementation, a
development setup and key technologies are described. For longer term evolu-
tion, the chapter provides a brief overview of stronger autonomy concepts like
machine consciousness and self-awareness, and relates them to current engi-
neering practices. This is used to point out directions for evolution of current

4 Sagar Behere and Martin Törngren

autonomous driving architectures. The impact of autonomy on architecting,
systems engineering, and technical implementations in the automotive do-
main is also briefly discussed.

The scope is delimited to a broad treatment of functional architectures and
systems engineering concerns relevant for autonomous driving. The emphasis
is on early stages of development and prototyping. Concerns exclusively re-
lated to the engineering of safety critical systems, as well as human machine
interaction, metrics for architecture and systems engineering, and topics re-
lated to engineering ethics are not covered.

The chapter is structured as follows: following this Introduction, Section
1.2 provides a description of the research method, followed by a summary
of important terms in the text in Section 1.3 provides a quick description
of important terms in the text. This is followed by Section 1.4 which pro-
vides a longer term perspective of the research area, exploring more abstract
concepts for enabling machine autonomy. The paper then becomes progres-
sively more concrete via Section 1.5 on Architecture, Section 1.6 on Systems
Engineering, and Section 1.7 on Technical Implementation. These chapters
cover the immediate and short term perspective in the field. The progression
from abstract to concrete is deliberately selected to guide the reader’s think-
ing from the more esoteric and principled notions of machine autonomy to a
practical immersion in the engineering state-of-practice. Finally, Section 1.8
presents a synthetic discussion that reflects on each of the covered areas, and
how they are affected by the characteristics of autonomy.

1.2 Research method

Research methods of Engineering Design have been used to generate this
chapter’s content. Engineering design is one of the research methods in sys-
tems engineering [44] wherein researchers address a problem which is impor-
tant and novel through the activity of designing a solution [45]. The knowl-
edge developed is primarily for practical application. An additional outcome
is some theoretical development based on generalization of design experi-
ences. A potential weakness of engineering design, as a qualitative research
method, is that of external validity. This is addressed here by a multitude of
different case studies and engagement with experts in different domains. Since
2010, we have designed solutions for, and engaged in a variety of self-driving
vehicle projects. The projects have involved a variety of commercial and re-
search vehicles, in academic and industrial contexts. A concise summary is
provided in Table 1.1. In 2010, an architecture for autonomous longitudinal
motion control was designed and implemented on an R730 commercial truck
from Scania CV AB. The truck participated in the Grand Cooperative Driv-
ing Challenge (GCDC) 2011, wherein vehicles operated autonomously on a
public highway in a platooning scenario, with constant wireless communica-

Title Suppressed Due to Excessive Length 5

tion between participating vehicles and the environment. The communication
contained operating parameters of each vehicle, like its speed, acceleration,
location etc. as well as the states of infrastructural elements like traffic lights
and prevailing speed limits. The architecture was refined and re-applied an
year later, on a different truck (an R430 model), for the CoAct 2012 project.
This project also involved a platooning scenarios similar to the GCDC 2011
event, but it included more demanding operational situations like splitting
and merging lanes, and overtaking. The accumulated architecture underwent
further evaluation and analysis in the course of three different projects with
various industrial partners, including a potential application to passenger
cars. One of these projects was DFEA2020 — a large Swedish consortium
project aimed at development of green, safe, and connected vehicles. An-
other project is FUSE — also a Swedish project, with a tighter focus on
functional safety and architectures for autonomous driving. The third project
is ARCHER — which investigates safety, reference architectures, and testing
and verification techniques applicable to commercial trucks. The FUSE and
ARCHER projects are still in progress. Starting from 2014, the architecture
was then applied to a novel research concept vehicle (RCV) at KTH, with a
view to endow it with autonomous driving capabilities. The RCV has an all-
electric, drive-by-wire powertrain with a propulsion motor embedded inside
each wheel, and active steering and camber control of all four wheels. The
architecture was then adapted to a second variant of the RCV (RCV-2.0),
where it serves as the foundation for autonomous urban driving capabilities in
situations where a human driver is not expected to be available (or capable)
of taking over vehicle control.

Year(s) Projects Vehicle Partners Outcome

2010-11 GCDC
2011

Heavy duty
commercial

truck

Scania CV
AB (OEM)

1. Autonomous longitudinal motion in
platooning scenario [60] 2. A reference

architecture for cooperative driving [25]

2011-12 CoAct
2012

Heavy duty
commercial

truck

Scania CV
AB (OEM)

Second, different instantiation of above
mentioned reference architecture for

cooperative driving

2013-14 DFEA2020
+ FUSE

+
ARCHER

Passenger cars Volvo Car
Corporation

(OEM)
+ Scania CV
AB (OEM)

Problem analysis, methods, and a
reference architecture for autonomous

driving [23, 24]

2014- RCV Novel research
vehicle

prototype

Departments
within KTH
(Academia)

Novel electric vehicle prototype with
-by-wire control of steering and propulsion

[83]

2015- RCV-2.0 Novel research
vehicle

prototype

KTH + A
private

company

Novel vehicle prototype with full
perception stack and urban autonomous
driving capabilities (under development)

Table 1.1 Projects contributing to this chapter’s content

6 Sagar Behere and Martin Törngren

1.3 Essential terminology and concepts

In this section, we briefly describe our specific usage of some important terms
that occur repeatedly in the text.

Autonomy is used in the practical sense as a machine’s ability to effec-
tively (with respect to its goals) operate in an uncertain environment, without
constant human supervision or intervention. Effective operation implies that
the desired goals are met in a safe manner with a desired level of performance.
Safety implies absence of unacceptable risk.

Architecture is defined by ISO 42010:2011 as ”..fundamental concepts or
properties of a system in its environment, embodied in its elements, relation-
ships, and principles of its design and evolution.” The architecture is thus the
”blueprint” of the system and one practical way to think of it is to decompose
it into conceptual and technical design aspects [33, 32] as shown in Figure 1.2.
These aspects may alternatively be referred to as ”views” of the architecture,
a term recommended by ISO 42010 and pertaining to an architecture descrip-
tion from a specific ”viewpoint”. A detailed explanation of Figure 1.2 can be
found in [23]. Briefly, the process of architecting a system can be initiated by
describing the functions which the system shall offer to its user (service taxon-
omy), without stating how the functions are internally realized by the system.
The service taxonomy is realized by the logical architecture, which shows the
logical decomposition of the system into its constituent components, without
specifying how those components are actually realized in hardware and/or
software. The logical architecture components are subsequently mapped onto
software elements, which are deployed on hardware computation units. The
computation and communication systems may further be partitioned in time
and space, depending on a variety of requirements related to performance,
availability, safety, prototyping tools etc.

Fig. 1.2 An overview of system architecture

Title Suppressed Due to Excessive Length 7

Systems engineering is defined by INCOSE as an interdisciplinary ap-
proach and means to enable the realization of successful systems. It integrates
all the disciplines and domain experts into a team effort forming a structured
development process that proceeds from concept to production to operation.
Functionality is defined early in the development lifecycle, requirements are
documented followed by design synthesis, testing, verification and validation
all while considering the complete problem which the system solves. Systems
engineering is especially relevant to the construction of large, complex and
safety critical systems. The formalized application of modeling to support
various systems engineering tasks is termed as model-based systems en-
gineering.

1.4 The context of machine consciousness

When thinking about autonomous driving, it is very easy to get lost in prac-
tical minutiae of sensors, hardware, programming, modeling etc. However,
staying entirely at this level of thinking can lead to ”not seeing the forest due
to all the trees”. As the complexity of systems rises, it is worth taking a step
back and asking, ”What is it that we are really trying to do, and is this the
right direction?”

In this section, we take a step back from the immediate engineering con-
cerns, and look at autonomous driving within the larger and somewhat ”philo-
sophical” context of generally autonomous and intelligent machines. The
engineering of autonomous driving systems rarely considers investigations
into domains like machine consciousness [50], self-awareness, and theories of
mind [38]. This is primarily due to two reasons: the technological/experiential
background of the engineers involved, and lack of clear mappings from the
mentioned domains to engineering concepts for certifiable, safety-critical em-
bedded systems. Nevertheless, we believe that keeping abreast of key results
in these domains is valuable for practitioners of autonomous driving because
it provides strategic guidance for future architecture concepts and identifies
the gaps that prevents utilization of results from these domains.

The ultimate goal for autonomous driving is not just human-like driving
but to go beyond human-like driving, in order to overcome human limitations
and appreciably increase road safety, traffic efficiency, and environmental ben-
efits. To achieve this goal, and to interact and coexist with human environ-
ments, machines would need a level of consciousness that approaches human
(admittedly under tightly constrained notions). This is because consciousness
is instrumental to reasoning, decision making and problem solving capabili-
ties in the face of uncertainty and disturbances. There is a variety of literature
[61] which suggests that robots’ problem solving capacities would be enhanced
by the ability to introspect. This is also a recurring theme across disciplines
like computer Systems-on-Chip [74], programming languanges [57], robotics

8 Sagar Behere and Martin Törngren

and even explorations for fault-tolerant on-board computing for robotic space
missions [87].

What would consciousness mean in the context of autonomous driving?
A dictionary definition [10] of consciousness is ”..the fact of awareness by
the mind of itself and the world” where awareness is further defined as
”Knowledge or perception of a situation or fact”. Within the field of phi-
losophy and cognitive sciences, however, consciousness is recognized as an
umbrella term covering a wide variety of heterogenous mental phenomena,
often grouped under the categories of Creature Consciousness, State con-
sciousness, and Consciousness as an entity [82]. While comprehensive and
precise definitions remain a topic of research and debate, from an engineer-
ing perspective we are interested in definitions only insofar as they help us to
identify and characterize specific machine behavior. Indeed, as far back as in
the 1950s, researchers like Alan Turing believed that questions about actual
intelligence (and presumably consciousness) were too vague or mysterious to
answer. Turing instead proposed a behaviorist alternative [81] wherein if a
savvy human judge could not distinguish a computer’s conversational abili-
ties from those of a real person 1 at a rate better than chance, then we would
have some measure of the computer’s intelligence. This measure of perceived
intelligence could be substituted for the computer’s real intelligence or ac-
tual consciousness. A loose application to autonomous driving could be: If a
savvy human judge can consistently accept a computer’s driving abilities as
equivalent to those of a competent human driver, then we would have some
measure of the computer’s driving capabilities. Indeed, on 4th May 2012, one
of Google’s self- driving Prius vehicles was granted a ”driving license” by the
Nevada state Department of Motor Vehicles, after the vehicle successfully
passed driving tests similar to those administered to human drivers[7] .

At this point, is useful to decompose consciousness into awareness of the
external and the internal, from the machine’s perspective. Awareness of the
external world involves elements of sensing, data fusion and perception, all of
which demonstrate progressive and on-going improvements within the domain
of autonomous driving (compare the sensors available for autonomous driving
today, with those from just a decade ago). This awareness of the external
world is usually explicitly represented in the internal world of the machine,
by maintenance of data structures reflecting perception of the external world.
From a philosophical view then, awareness of the external world is ”absorbed”
by the machine’s internal states, to which engineering attention must be
devoted, in order to achieve progressive results in machine consciousness.
However, for meaningful exploitation of any internal awareness, the machine
needs to be aware of the awareness i.e. it needs to be self-aware. This is
supported by explicit conclusions in the domain of machine consciousness,
for example McCarthy states [61] ”..some consciousness of their own mental
processes will be required for robots to reach a level of intelligence needed

1 This is the popular version. Turing actually framed a somewhat different test, as
discussed in [41]

Title Suppressed Due to Excessive Length 9

to do many of the tasks humans will want to give them.. consciousness of
self i.e. introspection is essential for human level intelligence, not a mere
epiphenomenon.”.

Which system characteristics and structures are instrumental for con-
sciousness and self-awareness? One approach to answering this is to under-
stand how the human brain functions, and mimic the biological structures
found therein. The strongest approach to understanding human conscious-
ness (and the only one relevant to autonomous driving) is that of computa-
tionalism [62] which is the theory that many relevant aspects of the human
brain can be modeled as having a computational structure. This approach
is the basis of the field of Artificial Intelligence (AI) which explores compu-
tational models of problem solving, although it reserves the possibility that
digital computers and brains-as-computers may compute things in different
ways. Research on computational models of consciousness has been driven
by researchers like Hofstadter, Minsky, McCarthy, Dennet, Perlis, Sloman,
and Cantwell Smith. A synthetic summary of their principal propositions is
presented in [62], where the dominant proposition is that ”..consciousness is
the property a computational system X has if X models itself as experiencing
things.”. Thus, central to the theory of computational consciousness is that
introspection is mediated by models.

As far back as in 1968, Minsky [64] introduced the concept of a ’self-model’:
”To an observer B, an object A* is a model of an object A to the extent that
B can use A* to answer questions that interest him about A. A* is a good
model of A, in B’s view, to the extent that A*’s answers agree with those of
A, on the whole, with respect to the questions important to B.”. This concept
is semantically the same as the engineering definition of model defined by
IEEE 610.12-1990, given in section 1.3 above. Most engineers know that a
model of a system is an abstraction of the system which provides answers
about desired properties and behavior of the system, with desired accuracy.
So we see that a specific category of models (the self model) can be the
theoretical basis for a meeting point between the more abstract reasoning of
consciousness and the concerns of ”everyday engineering”.

The computing models based on results from cognitive theory and spec-
ulations on the structure of the human mind are explored in the field of
cognitive architectures. There are a variety of cognitive architectures created
to mimic specific aspects of human reasoning and decision making in ma-
chines. These include RCS, ACT-R, SOAR, CLARION, NARS, YMIR and
others. A review of the prominent architectures (with further references) is
presented in [73] which is based on actively maintained online resources[4].
The review mentions 54 architectures, out of which 26 are described, and
observes that virtually all take their origin from biological inspiration, and
different approaches are remarkably similar in their basic foundations. A
comparative review of these architectures with specific relevance to machine
autonomy is provided in [78], which draws some important conclusions of
relevance to practicing engineers working on autonomous driving and other

10 Sagar Behere and Martin Törngren

safety critical systems. The comparison is made along four main themes of
’Realtime’, ’Resource management’, ’Learning’ and ’Meta-learning’. The con-
clusions highlight a prevalent gap between cognitive architecture design and
concrete operation in real-world settings. This gap is fueled by the observa-
tion that cognitive architectures generally tend to ignore realtime operation
and resource management aspects. Ignoring such practical matters not only
delays useful technological application, but likely leads to flawed theoreti-
cal foundations. In turn, this limits the usefulness of the architectures to
toy problems, ”devoid of the complexity of the real world that human beings
live and operate in.” [78]. A similar conclusion is drawn by other researchers
exploring challenges in the domain of embedded systems [51]. Fortunately,
these limitations are not shared uniformly by the cognitive architectures, pro-
moting the possibility of designing architectures with a more complete set of
cognitive functions and usable operational capabilities.

The current approach to autonomous driving capabilities is bottom-up:
based on refinement of features starting from the automatic transmission
and cruise control, to adaptive cruise control, lane departure indications, and
autonomous emergency braking, to traffic jam assist and advanced driving
assistance systems, eventually all converging on autonomous driving capabil-
ities. This approach has yielded excellent results so far; results which may
not have been reachable (in this timeframe) with a top-down approach that
started inquiring into the nature and structure of (human) consciousness. The
current approach has heavily adopted results from the robotics and AI do-
mains. The adoption has exclusively involved careful, manual construction of
systems, where learning and decision making takes place on the data/content
or module levels. Such a hand-crafted approach is referred to as the Con-
structionist Design Methodology(CDM) in the AI domain [78, 79]. However,
to create systems that approach human-level intelligence, significantly larger
and more complex architectures are necessary. There is a very real danger
that methodologies based on constructionist AI will prove inadequate ([78]
states more strongly ”..are doomed”) because of practical restrictions on com-
plexity and size of software based systems designed and implemented by hu-
mans. These restrictions are captured in the term cognitive complexity [55],
in the domain of embedded systems architectures. The cognitive complexity
attribute of an architecture limits the ability of humans to hold the entire
architecture in their head and reason about it. As cognitive complexity rises,
it becomes increasingly more difficult (and costly) to verify and validate the
systems, and assure properties like safety. Indeed, phenomena like feature in-
teraction [63, 53] have already started occuring in automotive architectures
(and generally, within cyber-physical systems) and their study and control is
an emerging area of research.

Within the AI domain, a relatively new constructivist approach [77] has
emerged, that advocates self-directed, introspective, learning and dynami-
cally adapting conscious architectures instead of the ’carefully handcrafted’
approach prevalent in the automotive domain. This is considered a paradigm

Title Suppressed Due to Excessive Length 11

shift, whereunder the machine may proactively invoke stimulus-response cy-
cles to continuously form and maintain self-models, and reason about their
characteristics. The evolution of existing engineering approaches towards con-
structivist concepts requires developments in at least four relevant areas
[75] (i) temporal grounding (ii) feedback loops (iii) pan-architectural pattern
matching and (iv) small white-box components. Temporal grounding com-
prises of an awareness of time in the real world, as well as the time needed
for the execution of software instructions, and how the two are corelated.
Such an awareness is already important in the design of distributed real-
time embedded systems, but as pointed out in [56], timeliness is a semantic
property that is not well captured in popular programming paradigms. At a
behavior level, temporal grounding involves predicting temporal result based
on internal models, and updating the internal models if/when the predic-
tions do not match the results. Traditional closed loop feedback is already
prevalent in autonomous driving. These loops typically control short-time
horizon actuation in response to the immediate sensing and perception of the
environment. When moving towards constructivist AI, there need to be addi-
tional feedback loops that modify the control structures themselves, based on
their perceived efficacy. This is closely related to the concept of self-modeling
based on observations of stimulus-reaction experiments in a given context.
Such modifications enable an expansion of existing skills and capabilities,
which is an important characteristic of general purpose intelligence. Pan-
architectural pattern matching is useful for the self induced comparison of
temporal versions of the architecture, as the system grows/evolves over time
in response to some specification. Pattern matching is also useful for iden-
tification of contexts and operational scenarios, which in turn is useful for
controlling mechanisms of attention and recall. These mechanisms are im-
portant because they enable the machine to filter out the large number of
stimuli present in complex operational situations, and focus only on those
that have been learned as being relevant. Existing autonomous driving ar-
chitectures are composed out of integration of large components like local-
ization, trajectory planning, propulsion etc. These components are typically
developed by different suppliers and are often ”black-box” components with
well-defined input/output interfaces. However their large size and black-box
nature makes it difficult for a machine to reason about their internals based
purely on an observation of the input/output signals. This is a critical is-
sue for self-organizing and self-aware systems, because it is difficult to reach
self-awareness in the presence of large, opaque internal components.

Constructivist AI certainly presents new challenges, some of which lie in
the determinism and predictability of state evolution, internal beliefs, and
actions of truly autonomous systems. These challenges currently run counter
to requirements on provable safety, determinism, and assurance of other crit-
ical properties, and the constructivist approach is unlikely to be adopted
for autonomous driving until it evolves sufficient tools, methods, reference

12 Sagar Behere and Martin Törngren

architecture patterns etc. to create practical and demonstrably safe and pre-
dictable systems.

1.5 An architecture for autonomous driving

In its current state, the tasks expected from an autonomous driving system
are fairly well-constrained and specific. Therefore, it is possible to create do-
main specific reference architectures for autonomous driving. Such architec-
tures would include definitions of the various architectural elements needed
by an autonomous driving system, the hierarchy and data-flows between these
elements and instantiation guidelines for specific use cases. In this section,
we present a brief introduction to the required architectural components and
some reasoning on their hierarchy and distribution. As with most domain
specific reference architectures, we restrict the scope to the functional/logical
views although some relevant technologies for instantiation are later described
in section 1.7.

1.5.1 Main architectural components

The main functional components needed for autonomous driving are sum-
marized in Figure 1.3. We have chosen to categorize these components into
three categories

1. Perception of the external environment/context in which the vehicle op-
erates

2. Decisions and control of the vehicle motion, with respect the external
environment/context that is perceived

3. Vehicle platform manipulation which deals mostly with sensing and actu-
ation of the Ego vehicle, with the intention of achieving desired motion

Each category has several components, whose functionality (from a strictly
architectural perspective) will now be briefly described. A detailed description
can be found in [24].

The sensing components are those that sense the states of the ego ve-
hicle and the environment in which it operates. The sensor fusion com-
ponent considers multiple sources of information to construct a hypothesis
about the state of the environment. In addition to establishing confidence
values for state variables, the sensor fusion component may also perform ob-
ject association and tracking. The localization component is responsible for
determining the location of the vehicle with respect to a global may, with
needed accuracy. It may also aid the sensor fusion component to perform a

Title Suppressed Due to Excessive Length 13

Fig. 1.3 Main components of an autonomous driving system

task known as map matching, wherein physical locations of detected objects
are referenced to the map’s coordinate system.

The semantic understanding component is the one in which the bal-
ance shifts from sensing to perception. More concretely, the semantic under-
standing component can include classifiers for detected objects, and it may
annotate the objects with references to physical models that predict likely
future behavior. Detection of ground planes, road geometries, representation
of driveable areas may also happen in the semantic understanding compo-
nent. In specific cases, the semantic understanding component may also use
the ego vehicle data to continuously parameterize a model of the ego vehicle
for purposes of motion control, error detection and potential degradation of
functionality. This component comes closest to incorporating the ’self-model’
needed for generating machine consciousness.

The world model component holds the state of the external (and possibly,
internal) environment, as perceived by the ego vehicle. It can be characterized
as either passive or active. A passive world model is more like a data store
and may lack semantic understanding of the stored data. It can not, by itself,
perform physics related computations on the data it contains, to actively
predict the state of the world given specific inputs. The active world model,
on the other hand, may incorporate kinematic and dynamic models of the
objects it contains, and be able to evolve beliefs of the world states when
given a sequence of inputs.

The trajectory generation component repeatedly generates obstacle
free trajectories in the world coordinate system and picks an optimal tra-
jectory from the set. The energy management component is usually split
into closely-knit sub-components for battery management and regenerative
braking. Since energy is a system wide concern, it is not uncommon for the en-
ergy managemnt component to have interfaces with other vehicular systems
like HVAC, lights, chassis, and brakes. The diagnosis and fault manage-
ment components identify the state of the overall system with respect to
available capabilities, in order to influence redundancy management, system-

14 Sagar Behere and Martin Törngren

atic degradation of capabilities, etc. Reactive control components are used
for immediate (or ”reflex”) responses to unanticipated stimuli from the en-
vironment. An example is automatic emergency braking (AEB). These com-
ponents tyically execute in parallel with the nominal system, and if a threat
is identified, their output overrides the nominal behavior requests.

The vehicle platform abstraction provides a minimal model of the
vehicle, whose data is used to ensure that the trajectories being generated
are compatible, optimal, and safe for the physics and capabilities of the actual
vehicle.

The platform stabilization components are usually related to traction
control, electronic stability programs, and anti-lock braking features. Their
task is to keep the vehicle platform in a controllable state during operation.
Unreasonable motion requests may be rejected or adapted to stay within
the physical capabilities and safety envelope of the vehicle. The trajectory
execution components are responsible for actually executing the trajectory
generated by Decision and Control. This is achieved by a combination of lon-
gitudinal acceleration (propulsion), lateral acceleration (steering) and decel-
eration (braking). Most recent vehicles already incorporate such components
and they may be considered ”traditional” from the perspective of autonomous
driving development.

1.5.2 A reference architecture

Having introduced the necessary functional components in the previous sec-
tion, we now combine them into a suggested reference architecture, as shown
in Figure 1.4, where the arrows show directed data-flows between the archi-
tectural elements.

The architecture is organized into three layers: the vehicle platform and
cognitive driving intelligence which are on-board the vehicle, and an off-board
or ”cloud” based layer for potential tele-operation, remote monitoring and/or
vehicle management. The off-board layer may be optional for many use cases,
nevertheless it is almost always useful at least during the early phases of ve-
hicle prototyping and testing. For heavy commercial trucks, some form of
fleet management systems are usually provided to the fleet operators. More-
over, there are compelling drivers for including vehicle-to-infrastructure (V2I)
communication to improve traffic efficiency and safety by sharing information
acquired from multiple vehicles and other sources.

One of the key data flows in Figure 1.4 is between the cognitive driv-
ing intelligence and the vehicle platform layers. Functionally, this contains
motion requests in the form of desired, instantaneous vehicle velocities, ac-
celerations (longitudinal and lateral) and deceleration. These are typically
in some absolute, global coordinate space, rather than being relative to the
vehicle’s motion. In practice, it may contain a short time series of these val-

Title Suppressed Due to Excessive Length 15

Fig. 1.4 A functional architecture for autonomous driving architecture

ues (trajectory fragments) rather than individual requests, because knowing
the anticipated future setpoints is helpful for achieving more optimal control
of the actuators. It is also feasible to include two different sets of trajectory
fragments: one which takes the vehicle to the desired destination, and the
other which takes it to a safe(er) state in case of system errors. The safe(er)
state trajectory is computed periodically and should ideally be executable
by the vehicle platform in an open loop fashion. The output of the Local-
ization function contains at least the 2.5 dimensional vehicle pose consisting
of the location in two dimensional space, as well as the heading. In prac-
tice, a lot more data and meta-data is provided which includes altitude, the
latitude/longitude coordinates, the same information in a variety of coordi-
nate spaces, detected known landmarks, number of satellites in the GPS fix,
estimated accuracy etc. The output of the sensor fusion function depends
heavily on the actual sensors and algorithms being used. Since lidars are
used very often it is not uncommon to see point clouds with associated meta-
information. The addition of a camera leads to the inclusion of extracted
image features, and possibly colored point clouds. The latter are especially
useful for classification in the semantic understanding component. The usage

16 Sagar Behere and Martin Törngren

of automotive grade radar is more interesting. Typically, automotive radar
sensors come with an associated ECU which directly outputs (possibly clas-
sified) objects and their properties like relative velocity and distance. The
radar outputs can be used for cross-correlation and plausibility testing of the
data from the lidar and camera sensors. However, in projects with a strong
emphasis on sensor fusion, the raw radar information may also be requested.
It can be seen in Figure 1.4 that the output of a functional component goes
to other components as well as the World Model. This is usually for perfor-
mance reasons. In an ideal implementation, it would be possible to have a
’star’ data topology where all the components exchange data only with the
world model. This is a simplifying abstraction, leading to a single source of
information and other benefits. However, it raises concerns on performance,
usually latency, as well as increasing the extra-functional requirements on
the world model, such as robustness, reliability and availability. The refer-
ence architecture permits both topologies and each instantiation may tune
the amount of information each component receives from the world model,
or directly from other components. The component interfaces are further
refined in the technical architecture, considering the constraints imposed by
the allocation of components to ECUs and the bandwidth of inter-component
communications.

The on-board autonomous driving architecture admits a variety of distri-
bution possibilities for the functional components. We choose to encourage a
strong isolation between the vehicle platform and the rest of the driving in-
telligence. This isolation is beneficial from a number of perspectives. Firstly,
from a legacy viewpoint, most automotive OEMs already have fairly sophis-
ticated functionality in their existing vehicles for management of the vehicle
motion. This includes features like (adaptive) cruise control, traction man-
agement, brake management including possible regeneration (for hybrid and
electric vehicle platforms), and in the case of heavy commercial trucks, ad-
ditional features like control of multiple axles, external brake requests, and
overall powertrain control. One of the most convenient ways to introduce
autonomous driving functionality is to introduce an additional system (the
cognitive driving intelligence) which generates the kind of operational set-
points that the various vehicle controllers are already setup to receive. These
setpoints are typically in the form of commanded acceleration, velocity, and
vehicle deceleration. Secondly, even if legacy is not a concern, isolating the ve-
hicle platform enables a clean separation of concerns and system partitioning.
The cognitive driving intelligence needs to generate desired vehicle motion
in some world coordinate system. Thus, its concern is to specify the global
motion parameters which the vehicle platform should fulfill. To do this, the
cognitive driving intelligence requires only a minimum model (abstraction)
of the vehicle dynamics and the vehicle platform configuration parameters.
Consequently, the entity responsible for answering the question, ”Where and
how should the vehicle move in the next N units of time?” need not have
an intimate knowledge of the various vehicle propulsion mechanisms and

Title Suppressed Due to Excessive Length 17

their continuous control. In turn, the vehicle platform is not required to have
knowledge of how and why the motion requests are generated. Its responsi-
bility is to fulfill the commanded motion requests while assuring the safety
of the vehicle platform in terms of basic vehicle dynamics (limiting longitu-
dinal and lateral accelerations, anti-lock braking, electronic stability control
etc.). This sort of encapsulation of functionality and separation of concerns
reduce the cognitive complexity of the architecture and are recommended
best practices in the field of systems architecting. Finally, the isolation also
facilitates product and platform variability management. Especially in the
domain of heavy commercial vehicles, it is quite common to find extreme
variability in each manufactured vehicle, since it is specifically configured for
each customer’s needs. By separating the cognitive driving intelligence from
the vehicle platform, it can be reused on different vehicle platforms.

The off-board layer, depending on its functionality, needs to tap into dif-
fering parts of the on-board architecture. In our experience, the maximum
amount of data exchange occurs with the World Model, since it holds prac-
tically all useful information needed by the off-board layer. This includes in-
formation regarding the current state of the on-board systems, the perceived
external environment, as well as any upcoming motion decisions that may
be in the execution pipeline. At the remote end, all received information is
typically accumulated in a database, which in turn feeds application specific
views of the gathered data. Active teleoperation [46] is foreseen in use-cases
where a fleet of autonomous vehicles is overseen by a command-and-control
center. In such use-cases, the vehicle may be able to ”call home” when it
gets stuck, or the remote center may actively claim control in potentially
hazardous situations. In these cases, the tele-operation part of the system
architecture needs to communicate with the Decision and Control part of
the on-board systems. The commands sent are usually brief motion requests
relative to the current location of the vehicle (in case the vehicle is stuck),
or reprogrammed destinations. In our experience, the remote commands are
directed at the cognitive intelligence and have relatively low bandwidth re-
quirements. Direct control of the components in the vehicle platform requires
significantly higher bandwidth and stricter timing constraints, which is rarely
possible over large distances with existing wireless communication technolo-
gies.

1.5.2.1 Comparison with similar architectures

Comparisons of the reference architecture can be made with the architectures
of Junior - Stanford’s entry in the 2007 DARPA Urban Driving Challenge, the
HAVE-IT project, and a Mercedes Benz autonomous car. These architectures
are relevant because they represent a steady improvement of functionality and
implementation, over the past decade. Junior is a successful example of a self-
driving vehicle from the early days of the technology, and a largely academic

18 Sagar Behere and Martin Törngren

proof-of-concept. The HAVE-IT project consortium had strong representa-
tions from OEMs and Tier 1 suppliers from the automotive domain, as well
as independent research institutes and universities - the project focused on
highly automated driving and advanced driver assistance systems. The Mer-
cedes Benz autonomous car development had the automotive OEM Daimler
AG as the majority stakeholder. The intent of the comparison is to highlight
similarities and differences, rather than make claims of which architecture is
”better”. An architecture needs to be evaluated in its context, because the
context imposes unique constraints with associated implications on the de-
sign. Thus, we choose to believe that every architecture that works has merits
in its own context, and that there is rarely a definitively best solution to any
given architectural problem.

Stanford University’s DARPA Urban Challenge entry, Junior [65], pro-
vides an early example of an autonomous driving architecture. The interface
to the VW Passat vehicle is via steering/throttle/brake controls, rather than
direct longitudinal and lateral acceleration demands. This can probably be
explained by the assumption that the autonomous driving architecture was
designed exclusively for tight integration with one particular vehicle, which
lacked general vehicle dynamics interfaces for setting acceleration and de-
celeration setpoints. The architecture is divided into five distinct parts for
sensor interface, perception, navigation, user interface, and the vehicle inter-
face. The localization is integrated into the perception part, and there seems
to be no effort to classify detected obstacles. This architecture also explicitly
includes a component/layer for ’Global Services’ dealing with functionality
like file systems, and inter-process communication. We do not describe these
services because they do not strictly fit into an architecture’s functional view.
The architecture is not strictly divided into layers, nor is there an explicit
component to abstract the view of vehicle platform.

The layered approach to architectures and their description is also found
in the European HAVE-IT project [15], which had its final demonstrations in
June 2011. This project architecture consists of four layers: ’Driver interface’,
’Perception’, ’Command’ and ’Execution’. The Perception layer consists of
environmental and vehicle sensors, and sensor data fusion. There is no men-
tion of localization, perhaps because the system operates in close conjunction
with a human driver. The Command layer contains a component named ’Co-
Pilot’, which receives the sensor fusion data and generates a candidate tra-
jectory. A ’mode selection’ component in the Command layer then switches
between the human driver and the ’Co-Pilot’ as a source of the trajectory to
be executed. The selected trajectory is then handed to the Execution layer
in the form of a motion control vector. The Execution layer consists of the
Drivetrain control, which in turn controls the steering, brakes, engine, and
gearbox. This execution layer corresponds closely to our vehicle platform
layer in that it pertains to drivetrain control and ”..to perform the safe mo-
tion control vector.” [15]. Also similar is the usage of a motion control vector
as an interface to the vehicle platform/execution layer. Our architecture ad-

Title Suppressed Due to Excessive Length 19

ditionally incorporates energy management as an explicit part of the decision
and control component, which is especially valuable for electric and hybrid
drivetrains, since then considerations of estimated range can be incorporated
in the long term trajectory planning. The HAVE-IT architecture evolved in
the context of Advanced Driver Assistance Systems (ADAS) with a strong
reliance on the human driver and emphasis on driver state assessment com-
ponents in the command layer; it remains unclear how well it can be adapted
to L4 autonomous systems, where a human driver may not be present.

Close comparisons can be made with the architectural components of
Bertha, the Mercedes Benz S-class vehicle, that recently(2014) completed
a 103 mile autonomous drive from Mannheim to Pforzheim [86]. In the sys-
tem overview presented in [86], components like perception, localization, mo-
tion planning, and trajectory control are clearly identified. These agree well
with the components we have described in this paper, however this is hardly
surprising. Every autonomous driving system requires these functional com-
ponents and they are likely to show up in practically every architecture for
autonomous driving. The system overview in [86] does not explicitly acknowl-
edge the existence of components for semantic understanding, world model-
ing, energy management, diagnostics and fault management, and platform
stabilization. It is possible that some or all of these were present, but not
mentioned. This is especially true for diagnostics and fault management. A
part of semantic understanding, related to classification of detected objects
can (and often is) put in the Perception component, as in [86], but we see
benefits in the explicit separation of sensor fusion and semantic understand-
ing advocated by our architecture. The isolation of semantic understanding
from raw sensor fusion enables faster and more independent iterations and
testing of newer algorithms, without affecting the rest of the system. This
is directly relevant to the engineering stakeholder concerns of independent
development of individual subsystems, as well as their virtualized simulation
and testing. Further, the raw object data from sensor fusion is still of value to
the Decision and Control components, despite a lack of accompanying seman-
tic understanding. This is because, although knowledge of whether a detected
object is a pedestrian or motorcycle is useful for optimized path planning, col-
lision with the object still needs to be avoided regardless of its classification.
In a similar vein, incorporating a distinct component for world modeling,
enables incremental sophistication in internal representations while retaining
(backwards compatible) interfaces. The existence of a distinct world model
components makes it easier to answer questions like, ”How will the world
evolve if I perform action X instead of action Y?” Although [86] mentions
the existence of a ’Reactive Layer’, it makes no mention of any other lay-
ers in the architecture and how the components are distributed across them.
In our paper, we make a clear distinction between the vehicle platform and
cognitive driving intelligence layers and provide a rationale for our proposed
component distribution.

20 Sagar Behere and Martin Törngren

Comparison of these and a few other architectures with our proposed ar-
chitecture leads us to believe that the explicit recognition of semantic un-
derstanding, world model, and vehicle platform abstraction components are
unique to our architecture. This is not entirely coincidental, since our incorpo-
ration of these components is, to some extent, a deliberate action to resolve
the short-comings we perceived during our early state of the art surveys.
Furthermore, our architecture has been applied to a larger variety of vehi-
cles (commercial trucks, passenger cars, as well as novel, legacy free designs)
and therefore necessarily incorporates features related to greater isolation of
functionality into distinct components and abstraction of vehicle interfaces.
The aggressive partitioning of architectural components provides significant
freedom to the component developers to modify and test new algorithms,
without affecting the rest of the system. It also reduces the cognitive com-
plexity of the system, and makes it relatively easy to foresee potential pitfalls
and debug causes of objectionable behavior.

1.6 Systems Engineering

Systems engineering concerns cover the methodology and artifacts related to
the engineering processes used throughout the development of the system.
Ideally, these concerns commence with an investigation of the needs which
the system intends to address, and then cover the entire development lifecycle
until the system is deployed. Beyond development, systems engineering also
looks at aspects related to the system’s operation, maintenance, potential up-
grades and eventual decommissioning. In this chapter we restrict the scope to
the development activities only. Within this restricted scope, we discuss the
modeling steps and associated classes of models that are important for the
development of autonomous driving systems. They are important not because
the nature of autonomy directly necessitates an increased focus on systems
engineering, but because autonomy requirements increase the complexity of
the system being designed. The complexity, together with the safety critical
nature of the system, requires careful attention to all aspects of the develop-
ment processes, which is facilitated by systems engineering and its associated
methodologies, tools and artifacts. Thus, the topics covered in this section are
not exclusive to autonomy, but they have a significantly increased importance
within the context of autonomy.

In model based systems engineering (MBSE), the engineering processes are
supported by an increasing set of models, some of which become increasingly
detailed. To guide the systems engineering process, there exist a number of
lifecycle development models and engineering methodologies. Most lifecycle
models are grounded in one of three seminal models [42]: The Waterfall model
[71], the Spiral model [27], and the V-model [47, 48]. Of these, the V-model
and its variations have been extensively applied to systems engineering and

Title Suppressed Due to Excessive Length 21

development. These lifecycle models are leveraged by various MBSE method-
ologies, such as OOSEM, RUP-SE, Harmony-SE, JPL State Analysis etc. An
overview of these prominent methodologies is given in [42], which includes
further information, including additional references for each methodology.
More methodologies have since been identified and they are gathered and
described online at the MBSE Wiki Page [16]. Beyond these relatively gen-
eral methodologies, there are also approaches to specific parts of systems
engineering that are more focused on embedded and automotive systems.
These deal with topics like requirements engineering [31], formal semantics
[35], multi-view modeling [34] etc. Among other things, the methodologies
define a number of development activities. Example activities are the defi-
nitions of stakeholder needs, system requirements, logical architecture, and
system validation and verification. In some methodologies, the execution of
these activities may be referred to as ’phases’. Each methodology involves
a slightly different grouping and sequencing of activities and phases. The
MBSE methodologies may or may not recommend a specific language or tool
framework, however, they all involve the creation of models or model views
supporting each engineering phase. In this section, we propose four classes
of models, the contents of which are independent of methodology, but which
can be mapped to different activities within a selected MBSE methodology.
Similarly, a project specific lightweight MBSE methodology may be created
by selecting specific models from each class and specifying the sequence(s)
of their creation using particular tools. Thinking in terms of model classes is
valuable because classes easily encapsulate a diversity of modeling formalisms
and tools. The diversity is necessitated, at the very least, due to the state of
practice in modeling technologies - at the moment, there exists no compre-
hensive modeling formalism that can completely capture all relevant systems
engineering stakeholder concerns. Therefore, the various concerns need to be
captured using heterogeneous sets of possibly domain specific models.

Establishing and maintaining links between all the assorted models is an
active area of research [80], but in the meantime, project specific inter-model
links need to be selected manually by the practicing systems engineer, and
these need also need to be manually maintained by the engineering team.
The links represent relations like refinement, allocations, correspondence etc.
between the model elements. An active risk to be guarded against is that
in fast moving projects systems engineering models are assigned secondary
importance. Therefore, either models are not created, or the models and
links are not updated as the implementation changes. Over time, there is
significant divergence between the implementations and the models. This
leads to accumulation of systems engineering ”debt”. The debt accumulation
can be partially mitigated by via two interrelated choices: the methodology,
and the tools used for the systems engineering process. Flexibility in the
methodology and automation support from the tooling reduce the ”cost” or
effort of model creation and maintenance, making it more likely that the

22 Sagar Behere and Martin Törngren

engineering team views systems engineering as less of a ”burden” and more
of a benefit.

Below, we discuss some key steps in systems modeling, sequenced as they
would occur in an ideal development processes. Realistically, it is very impor-
tant that the methodology and associated tools permit the engineering team
to begin with modeling multiple, arbitrary concerns, which can later be ex-
tended and linked to other models in all directions. Thus it should be possible
to start modeling the logical architecture of the system, or a software compo-
nent, without having explicitly modeled the preceding requirements, actors
and their interactions. Such knowledge may be implicitly known/assumed by
an engineer who is itching to sketch out an architectural solution - forcing
her/him to explicitly model requirements and behavior first merely results in
annoyance and rebellion.

The main systems engineering model classes that support the steps we
describe are shown in Figure 1.5. It should be noted that there may exist
a variety of different models within each model class. The first step is to
analyze and represent the system’s users, their operational needs, and the
usage scenarios. Who are the actors involved in interacting with the system?
Actors can be human users as well as other entities involved in autonomous
driving like other road users, road infrastructure like traffic lights, etc. Once
the actors are defined, the next task is to determine what they want the
system to do. What behavior and services do they expect from the system?
What are the contexts within which the actors will interact with the system?
What will be the modes of interaction, and how are they related to the
operational contexts? Depending on the modeling languages and tools used,
there can be a variety of diagrams, process definitions, allocation of actors to
process artifacts etc. for capturing and representing the ideas at this phase.
This phase helps to identify the principal behavioral requirements expected
from the system and its usage by the actors involved.

Fig. 1.5 Systems engineering model classes

The second step is to identify the main system components, their con-
tents, relationships, hierarchies, properties, and behavior. This constitutes
the logical or functional architecture of the system and it excludes concerns
related to technological implementation of the identified components. How-
ever, it does take into consideration all major extra-functional constraints
(like safety, security, performance, reliability, etc.) so as to find a suitable
compromise between them (to the extent this is possible without getting into

Title Suppressed Due to Excessive Length 23

implementation specific detail). The logical architecture defines the compo-
nents and their interfaces, including formalization of all logical views and
how these views are accounted for in the component designs. The behavior
requirements from the previous step are refined and allocated to the identi-
fied architectural components. Links between requirements, operational sce-
narios, actors, and components are also established. The entire process of
logical architecture can be applied repeatedly within the boundaries of a sin-
gle logical component or its sub-components. Thus, the logical architecture
may have multiple and differing ”levels of zoom” for each of the components
and their connections. Depending on the tools used, the logical architecture
and its properties may be represented using a multitude of models, modeling
tools and languages, or with a unified, all encompassing model, within which
various related concerns are represented using specific views. Given a logical
architecture including behavioral views, one could use tools for static anal-
ysis (e.g. checking interface compatibility) and perform behavioral analyses.
These may include simulation and model checking to assure specific system
properties like absence of deadlocks, reachability of specific states etc. The
specific analysis techniques of interest may very well dictate the choice of
architecture representation languages. For example, it is not uncommon that
a modeled architecture or its subcomponent needs to be re-modeled using a
different language, just so that it can be verified by using a particular model
checker.

The third step is the modeling and grouping of application software com-
ponents within the system. The grouping may be in terms of individual soft-
ware applications, or for the purpose of simulation in tools like Simulink.
These models include representations of the behavior of the software compo-
nents, their resource requirements, runtime characteristics, interfaces, prop-
erties and attributes, and communication specifications. At this stage it is
increasingly common to see the usage of so called ”executable software mod-
els”. Executable software models are those which can directly be transformed
into compilable source code, with guarantees that when the source code is
executed under assumed conditions, it should have the same behavior as the
modeled software component. Dependencies on expected platform capabili-
ties are usually explicitly mentioned for each software component model.

The final step is the modeling of the platforms on which the application
software components execute. The platforms consist of a ’stack’ incorporating
the computing silicon (micro-processors/controllers), an optional operating
system which may or may not provide realtime guarantees or alternatively, a
native language runtime for the chosen silicon, an optional middleware that
abstracts the operating system and its services, and any libraries, daemons
and other services provided by the operating system and hardware. Mul-
tiple application software components may execute on the same or similar
platforms, and in cases of advanced experimental architectures, application
software components may migrate between similar platforms. In all cases, it is
more convenient and useful to model a platform and its services as a whole,

24 Sagar Behere and Martin Törngren

rather than embed this information into each application software compo-
nent. However, we emphasize that this is largely a matter of preference.

Associated with all the four modeling steps is a continuous refinement
of requirements, test cases, safety viewpoints, and documentation artifacts.
A comprehensive taxonomy of models associated with each step is beyond
the scope of this chapter, but each step must introduce additional models
representing requirements and test cases relevant to that step. Requirements
must be allocated to models that assure them, and both requirements and
test cases need to be assigned to unique members of the engineering team.
Safety considerations are usually generated by following processes established
by safety standards like ISO26262. Additional models/views like functional
safety architecture will be introduced, along with their refinements to techni-
cal safety architectures and associated redundancies and switching modes for
application software and platform components. The number of models may
grow and shrink at each step as the systems engineering process is iteratively
applied during system development. Ultimately, the artifacts ideally exist as
a web of interconnected models at each step and across the steps. Preserving
the links between the models, and keeping the models up to date with the
implementation is a significant challenge. One way to do this is via increasing
toolchain automation, but given the relative lack of production ready tools, it
becomes the responsibility of the architecting and systems engineering team
to select and minimize the number of models used to represent the system.
This in turn, depends on a variety of technical and non-technical factors like
the nature of the project and its maturity level, available tools, the impor-
tance attached to systems engineering by project management, the skills and
qualifications of the people involved etc. One recommendation based on our
experience is to always synchronize the software and platform models with
the actual technologies being utilized in the project. These will change as the
project moves through stages of proofs-of-concept, prototyping, to certifiable
implementations. The models need to be updated correspondingly. For ex-
ample, during the early prototyping phase, if the entire application software
is modeled in Simulink and the execution platform is a rapid prototyping sys-
tem like the dSpace MicroAutoBox, it makes little sense to model the system
in terms of software threads, tasks, operating system runtimes etc. because
the modeling concepts and technical implementation concepts just do not
synchronize in terms of relevance. Here, it is better to restrict the models to
Simulink and coarse dSpace specifications. When an eventual move is made
to AUTOSAR or similar infrastructure, the associated models dealing with
finer platform details may be created.

One of the conflicts that MBSE can help resolve is the need for fast de-
velopment cycles, while guaranteeing consistency of the various process and
product artifacts. In our opinion, this necessarily requires the support of
advanced tooling and as such, the details are highly tool specific. But the
general underlying patterns involve inter-model links, co-simulations, and
model checkers. The inter-model links typically represent relationships be-

Title Suppressed Due to Excessive Length 25

tween the linked models, for example, B ”realizes” A or Q ”is derived from”
P etc. An example of this is a facility offered by several commercial toolsuits
wherein requirements can be linked to specific blocks in a Simulink diagram.
When either of the models changes (the requirement or the Simulink block),
a flag is raised to signify that the status of the link requires investigation.
Depending on the tool support, additional data on what has changed may
also be presented. Even a simple facility such as this helps to prevent un-
detected changes from propagating through the design. Prior to a release,
the MBSE process may require that no inter-model links have unaddressed
’change flags’. Similarly, with the advent of technologies like Open Services
for Lifecycle Collaboration (OSLC) [9], the concept of ”round-trip” flows is
gaining ground. In a round-trip, a model created using some particular mod-
eling technology can be ”exported” to a different tool, where it is enriched
or analysed, and the results can be sent back to the original tool. Techniques
like OSLC or Functional Mockup Interface (FMI) [6] enable model exchange
and co-simulation of heterogenous models. Such co-simulations can be used
to simulate an entire vehicle, comprised of different types of linked mod-
els. Thus, it becomes possible to easily examine the impact of changes deep
within one particular model, on the overall vehicle behavior. For individual
models, the usage of model checkers can help assure that desired properties
are retained (for example, absence of deadlocks and unreachable states) after
model modification.

Based on the modeling steps described, and the classes shown in Figure
1.5, a partial view of modeling artifacts and their allocation links is shown in
Figure 1.6, where the rightmost column describes some of the functionality
provided by the models. The dotted, curved arrows crossing the vertical layers
represent allocation links. Thus arrows between the architecture representa-
tion and application software components show the mapping between logical
architecture elements and particular application software components. For
the sake of clarity, the continuous refinement and accumulation of require-
ments and tests is not shown in the diagram. Examples for specification,
structuring, and refinement of requirements can be found in [85, 84]. The
tests description must include the tools and methods of conducting the tests,
templates for data logging during testing, component behaviors and data val-
ues/ranges that constitute an acceptable test result. Figure 1.6 represents a
concise takeaway of the contents of this section on systems engineering.

1.7 Technical implementation

In this section, we briefly discuss some selected technologies that have proven
useful in our experiments for implementing autonomous driving systems. The
emphasis is on the early prototyping phase, since that is usually when it is
possible to experiment with novel technologies in a low risk manner. Similar

26 Sagar Behere and Martin Törngren

Fig. 1.6 Partial view of modeling artifacts and allocation links

to Section 1.6, the topics and technologies covered in this section are not
exclusive to autonomy, but they have a magnified importance in the context
of the development of autonomous driving systems, which makes them worthy
for consideration.

Since the last 15 years, there has been a proliferation of various Architec-
ture Description Languages (ADLs) in academia and industry. A systematic
overview is provided in [52], which discusses 102 ADLs with 33 from Industry
and 69 in Academia. Each has its own specific meta-model, notations, tools,
and domain applicability, with little chance of interoperability between them.
Moreover, the ADLs themselves have often undergone complete changes or
remodeling between versions. Capturing the vast variety of stakeholder con-
cerns within a single notation is exceedingly impractical, as is the aim of
creating a ”universal notation”. Consequently, domain specific ADLs have
emerged, which focus on the properties of a particular domain, and specific
types of analyses and modeling environments [59]. When different concerns
need to be modeled in differing languages, the individual models need to be
synchronized, such that changes in one model are propagated and reflected
in the others. There are efforts for tool based and automated synchronization
but practically, this is still a manual process. Thus, domain specific ADLs
need to strike a sweet spot where they are expressive enough to model all
relevant stakeholder concerns in the domain, while minimizing syntax and re-
maining usable. This needs to be complemented with excellent tools, prefer-
ably those which also enable bi-directional synchronization not just between
different models, but also between models and executable implementations.
This is a steep challenge. We have identified three candidates that are broad
and deep enough to address a non-trivial number (but not all!) of stake-

Title Suppressed Due to Excessive Length 27

holder concerns, in the field of automated driving: EAST-ADL2 [40], AADL
[43], and ARCADIA [12]. Of these three, AADL and ARCADIA are gener-
ally applicable within the domain of embedded systems architecture, while
EAST-ADL2 is specifically intended for automotive systems. All three enable
the representation of requirements, behavior, structure, mapping to technical
implementations as well as tracebility links among them. Both EAST-ADL2
and AADL have reference tooling to import Simulink models to form archi-
tecture representations. This is important, because Simulink is the de facto
simulation and modeling tool in the automotive industry. EAST-ADL2 is
supported by a language specific core methodology [2] which can be com-
plemented by additional extensions related to requirements traceability [21],
formal analysis and verification [54] etc. Similarly, the ARCADIA method
is embedded strongly in the recently open-sourced tool Capella [14]. In our
opinion, Capella is the most mature, comprehensive, and user-friendly open-
source tool available for model based systems engineering at the time of this
writing. It is built on the Eclipse ecosystem, and it been in use internally
at the Thales company for over five years. The tool guides the user through
a series of top-down modeling activities defined by the ARCADIA method.
It also offers a series of default viewpoints for modeling, and within each
viewpoint modeling can be done by means of a number of diagram types.
Definition of custom viewpoints is also possible within Capella. Note that
although all these tools have the word ’architecture’ in their names, their ac-
tual functionality goes beyond traditional architecture and into the various
systems engineering modeling activities we have covered.

An important consideration in the selection of tools and languages used
for systems engineering and other modeling, is the support they have for the
platforms and programming languages used in the system implementation.
Automotive domain specific languages like EAST-ADL2 have built-in support
for AUTOSAR concepts, enabling an easier mapping from the models to their
implementation platforms.

For technical implementation of autonomous driving systems, we propose
a setup represented in Figure 1.7. The setup consists of aggregations of com-
ponents, connected by a publish-subscribe bus with Quality of Service (QoS)
filters. The aggregations are represented by the boxes in Figure 1.7 and agree
well with the architectural layers presented in Section 1.5. The overall in-
tent is to support development of functionality in simulations and on target
implementations, with the ability for seamless transitions. Even when cer-
tain functionality has been implemented on target hardware, it is still valu-
able to switch back-and-forth between simulations and propagate changes in
both directions. The setup consists of a physical platform (a.k.a drivetrain)
along with a simulation of it running on a general purpose computer (the
”soft” simulation) and a version running on a hardware-in-the-loop (HIL)
rig. Similarly, the various drivetrain controllers exist as soft simulations and
implemented on target hardware. The cognitive driving intelligence layer is
aggregated in an implementation, in addition to a synthetic 3D environment

28 Sagar Behere and Martin Törngren

setup for example, within a 3D gaming engine like Unreal [19]. Within the
synthetic environment, techniques like ray-tracing are used to emulate radar,
lidar, and camera sensors. The environment incorporates physics engines for
calculations of solid body dynamics, collisions etc. The setup allows for com-
binations like driving the real, physical vehicle in a real environment, driving
a virtual vehicle in virtual environment using the real, implemented driving
intelligence, testing the implemented drivetrain controllers on a simulated
drivetrain, etc. Of course, depending on the constraints and resources of a
particular project, not all aggregations need to be present.

Fig. 1.7 Proposed implementation setup for autonomous driving

The technical implementation platforms for the cognitive driving intelli-
gence and the virtual environments are typically (during prototyping) com-
mercial off-the-shelf (COTS), general purpose, multi-core computers with
best-of-breed COTS graphics processing units (GPUs). GPU vendors also
provide a variety of graphics and parallel processing libraries to leverage the
capabilities of their platforms. The computers usually execute the Linux oper-
ating system, with middleware like ROS [70] or OROCOS [36]. Of these, ROS
is more popular, with a large, open-source community. It provides facilities
for computation and communication across processes running on the same
and different computers. ROS does not support hard realtime operation, but
for prototyping this is usually not a limitation, provided the hardware has
sufficiently fast processors and enough memory. Hard realtime requirements
are usually more critical for the drivetrain control, compared to the cogni-
tive driving intelligence. However, Linux does provide some hardened timing
guarantees with the help of the PREEMPT RT kernel patch [18] or dual kernel
approaches like Xenomai [20]. The OROCOS middleware provides a compo-
nent framework that can leverage the hardened realtime properties and it also
supports inter-component communication on the same and different comput-
ers. The programming language of choice for the cognitive driving intelligence
is usually C++, a choice often mandated by the used middleware and useful

Title Suppressed Due to Excessive Length 29

libraries2 like OpenCV [30] and the Point Cloud Library (PCL) [72]. The
usage of Java for high level tasks is not uncommon either, although there
is a lingering perception that it suffers from performance problems in com-
parison with C++. A modern alternative to Java is the Scala programming
language [67], which in our opinion, deserves greater interest. Scala allows
for strict functional programming, object-oriented procedural programming,
as well as a free combination of the two. It runs on top of the Java Virtual
Machine (JVM) enabling it to leverage existing Java libraries. The func-
tional programming paradigm emphasizes stateless, side-effect free functions
as building blocks, which leads to greater ease of side-effect free composition
of functionality.

The ”soft simulations” of the drivetrain and its controllers are usually
made in Simulink, typically running on the Windows operating system on
general purpose COTS computers. The reason for choosing Windows here is
that these simulations are often executed on rapid prototyping systems like
the Simulink RealTime and dSpace autobox, the tooling for which is often
Windows-only.

There is a greater variety of platforms for the drivetrain controllers,
where constraints of realtime, scheduling, input-output, and computing re-
sources are more prominent. Relevant operating system standards here are
OSEK/VDX [17] , parts of which are standardized in ISO 17356, and AU-
TOSAR [13] , which reuses large parts of OSEK. There are a large and diverse
number of vendors supplying customized real time operating systems, and
middleware stacks with varying capabilities. The programming languages of
choice are usually C or C++, where large portions of the code is autogener-
ated from tools like Simulink. For both languages, safety critical subsets are
defined by the Motor Industry Software Reliability Association (MISRA), in
the form of approved language usage rules and there are tools to generate
and verify C/C++ code against the MISRA rules. In our recent projects, the
usage of the Ada 2012 programming language is receiving greater attention.
This is partially because of its reputation as the programming language of
choice in other safety-critical domains, as well as its syntactic support for
notions of contract based programming in the 2012 version. The latest incar-
nation of the safety critical subset of Ada, SPARK 2014, also deserves rising
interest, in our opinion, not least because of its accompanying tooling for code
analysis, coverage and testing. Ada provides a number of runtime profiles,
including a multi-tasking profile named Ravenscar [37]. The language then
provides built-in support for tasking and inter-task communication, often
negating the need for an explicit operating system on embedded microcon-
trollers. The dominant embedded microcontrollers in this domain are based
on the ARM platform, which provides both uni- and multi- core processors in
32 and 64 bit configurations. For drivetrain controllers, the matching of the
hardware platform with the operating system (OS), and the OS support for

2 Although some libraries do provide bindings for other languages, in our experience
C++ still dominates the scene.

30 Sagar Behere and Martin Törngren

low-level hardware and peripheral drivers is a more important consideration
than for the platforms used for the cognitive driving intelligence, since there
is less standardization in this area.

Communication middleware has not made significant inroads in the au-
tomotive domain, beyond the functionality provided by AUTOSAR with its
Virtual Function Bus (VFB) concept. At a lower level, the CAN bus remains
the most common technology for connecting distributed vehicle controllers.
Autonomous driving systems impose greater bandwidth requirements on the
in-vehicle communication links, which is especially true when high resolution
sensors like cameras and multi-beam lidars are utilized. The usage of gigabit
Ethernet is exceedingly common in autonomous driving projects, especially
for connecting the computers executing the cognitive driving intelligence.
Considering that these computers use general purpose operating systems
and programming libraries, they are able to utilize advanced communica-
tion middleware, beyond bare TCP/IP or UDP/IP socket communication
in client-server scenarios. Three facilities provided by advanced communica-
tion middleware are: automatic de/serialization of data structures into wire
representation, high level functions for sending and receiving the data using
fine-grained Quality of Service (QoS) guarantees, and automatic routing and
service discovery within the network. The middleware uses either the bro-
kered or broker-less architectures and often uses uniform APIs regardless of
whether the communication is between threads in a single process, between
multiple processes on the same computer or across computers. It also makes
available smarter communication patterns like publish-subscribe, push-pull,
N-to-M, fan-in, fan-out etc. A relatively recent communication middleware
standard becoming increasingly common for critical, distributed realtime sys-
tems is the Object Management Group’s Data Distribution Service (OMG-
DDS) [68]. DDS supports message structure definition using an Interface
Definition Language (IDL) similar to CORBA, and thenceforth manages all
aspects of data transmission and wire-representation with a large number of
QoS settings, using the publish-subscribe pattern. Another efficient commu-
nication middleware is ZeroMQ [5], which provides no built-in support for
data de/serialization (it transmits given ’binary blobs’), but supports sub-
stantially more patterns than just publish-subscribe. ZeroMQ also provides
bindings for over 40 programming languages.

1.8 Discussion

In this chapter, we have touched upon some relevant topics on the nature
of autonomy, architectures and systems engineering aspects for autonomous
driving, as well as implementation technologies for prototype systems. This
section presents a synthetic discussion highlighting how these areas affect
each other, as well as the how autonomy influences each of them.

Title Suppressed Due to Excessive Length 31

1.8.1 A holistic view

A holistic view, relevant for both long term perspectives as well as contem-
porary engineering is shown in Figure 1.8. The Figure shows that each of
Concepts, Architecture, Systems Engineering and Technical Implementation
can be divided into two parts. One part is for the relatively low level concepts
of contemporary engineering, and the other is for the higher level concepts
arising from theories of general autonomous and intelligent systems. The for-
mer part is shown in the inner circle of Figure 1.8, while the latter part is
shown in the outer circle. Thus, the basic functional components for the ar-
chitecture, as described in Section 1.5.1, and their inter-connections form part
of the inner architecture circle. The higher level concepts like runtime system
level reasoning, which would be useful to have, but are currently not included
in most contemporary architectures, are shown in the outer architecture cir-
cle. Figure 1.8 also shows that the concepts and systems engineering areas
drive developments of architectures and technical implementations, for both
high and low level concepts. The state of the art in autonomous driving still
lies mostly within the inner circle, with very brief and occasional excursions
to the higher levels.

The construction of autonomous driving systems today very much follows
the Constructionist Design Methodology(CDM) which involves integration
of a large number of functionalities that must be carefully coordinated to
achieve coherent system behavior. For autonomous driving, the coordination
is manual, and notions of coherency are mostly implicit in the heads of the
designers. This approach limits how well systems scale with rising system
complexity. These limits are already acknowledged in research on AI sys-
tems integration [76], which is exploring a fundamental shift from manually
designed to self-organizing architectures that can learn and grow [75] - the
so-called constructivist approach. However, given the safety, reliability, deter-
minism and real-time requirements of autonomous driving, it is not feasible
to abandon the constructionist approach entirely. Therefore, it is necessary to
reason on the gap between the two approaches to determine the direction in
which autonomous driving architectures need to evolve. One way to explore
the gap is to think in terms of ’missing components’ and how they can be
injected into the existing architecture patters without breaking them. A key
missing component is an explicit representation of a ’Self’ or ’Ego’ within
the vehicle, along with a ’Goals’ module. Today, the automobile architecture
is made up of a variety of basic sub-systems like the engine, the transmis-
sion, the brakes, steering etc. and some hierarchically higher sub-systems
related to traction control, traffic jam assist and so on. These systems have
limited knowledge of the existence, purpose and functioning of the other
sub-systems (following the excellent architectural principal of ’separation of
concerns’) and consequently, in the presence of severe uncertainty or distur-
bances within the operational environment or due to internal failures, there
is no particular sub-system that can perform system-wide reasoning, revise

32 Sagar Behere and Martin Törngren

Fig. 1.8 A holistic view of the concepts covered in this chapter

previously held beliefs about the system capabilities and its environment,
and act/adapt accordingly. When the operational situation exceeds the lim-
its envisioned by the system’s human designers, or when the carefully scripted
responses fail, the system as a whole also fails. The presence of explicit ’Ego’
sub-systems could be a first step in addressing this problem. The ’Ego’ would
be aware of the primary behaviors the vehicle is expected to fulfill, as well
as the various subsystems present and how they work together to generate
the desired behavior. The architecture of the ’Ego’ is an interesting topic in
itself: it could range from a ”thick central” ego component, to a hierarchical
network of ego components in each subsystems. The self-awareness would be
continuously represented and maintained in the form of a self-model. The
set of self-models can be ’seeded’ at the time of the architecture deployment
and the ’Ego’ would be free to evolve them and synthesize other models
throughout vehicle operation. Preliminary methods for automatic synthesis

Title Suppressed Due to Excessive Length 33

of multiple internal models already exist (see for example [28]) and have
been proven to successfully increase machine resilience [29]. This directly
contributes to characteristics like fail-operational behavior and survivability,
which are desirable in autonomous driving. Initially, the operation of the
Ego sub-system would be limited to (de)activation of particular subsystems,
dynamic reconfigurations of the connections between the systems, transfer
of functional responsibility between the sub-systems, and triggering specific
modes in individual subsystems. With today’s technological means, all per-
missible system configurations need to be proven for coherence, consistency
and safety in advance. The eventual transition to constructivist architectures
creates the possibility of runtime reasoning in the Ego components, leading
to runtime verification of the desired properties. The AI domain is already
reporting some progress towards agents, design methodologies and program-
ming paradigms following constructivist approaches [39, 69, 66]. We feel that
this is a good time to engage with researchers in the domain of AI systems
integration, in order to highlight the requirements relevant to practical em-
bedded systems. This is intended to prevent a repetition of the problem seen
in the area of cognitive architectures, wherein real world concerns are rarely
accounted for in theoretical development [78].

As noted in the outer circle of Figure 1.8, there have been efforts to cre-
ate higher level concepts like consciousness and cognitive architectures, that
mimic some aspects of human decision making. However, corresponding de-
velopments in systems engineering are conspicuously missing. We anticipate
that an expansion to the scope of existing systems engineering to construc-
tivist architectures will be adequate, without needing a revolution of the
underlying methodologies. However, particularly strong challenges still ex-
ist within the area of model based systems engineering. These challenges
are in two general directions: maintaining consistency between various mod-
els/views, as well as between the models and implemented artifacts. The
usage of constructivist AI designs in upcoming architectures will also impact
the testing, verification, and validation aspects of the systems engineering
processes. This is because, if the system behavior is partly synthesized at
runtime, and could take forms not anticipated during design, it would be
challenging to find testing and verification methods that demonstrate cor-
rectness of behavior prior to deployment.

In our experience, the availability of suitable implementation platforms
and technologies is not a strong limitation in autonomous driving, with a
possible exception being in the area of sensors for perception and localization.
The capabilities of state of the art silicon, programming tools, communica-
tion technologies are adequate to implement the elements found in existing
and proposed autonomous driving architectures. This is not to say that better
tools for analyzing code, model checking, translation of models to executables
etc. are not desired. All of this holds true within the constructionist approach.
The shift to a constructivist approach however introduces paradigm shifts in
implementation, notably for capabilities of programming languages. The pro-

34 Sagar Behere and Martin Törngren

gramming of autonomy requires language constructs supporting autonomous
knowledge acquisition, realtime and any-time control, reflectivity, learning,
and massive parallelization [66]. Such constructs are missing from the most
common programming languages currently employed in the development of
safety critical embedded systems.

The four steps for systems engineering proposed in Section 1.6 are com-
plementary to the systems engineering processes based on the V-model, or
those recommended by ISO26262. The former chiefly recommends activities,
the latter introduces views and requirements to analyze and assure functional
safety. Models, views and other artifacts underlie both. In our experience, sys-
tems engineering and associated modeling is usually given secondary impor-
tance during the prototyping phase. Once a functional prototype is available,
the focus shifts to writing extensive requirements and acceptance criteria,
which are then off-loaded to vendors and suppliers for process adherent devel-
opment. The usage of early lightweight modeling, with subsequent refinement
and additional models/views has the potential to keep development consis-
tent not only during the prototyping phase, but also for making a smoother
transition to high maturity implementations.

1.8.2 The influence of autonomy

For autonomous driving, the impact of autonomy on architecture, is
mostly related to the need for specific functional components. These com-
ponents are responsible for perception of the external world and its internal
representation, localization of the vehicle with respect to some coordinate
system, finding collision free trajectories between detected obstacles while
staying on a driveable surface, and reacting to unexpected external and in-
ternal events with the intention of reaching a safer state. Also present are
more ”traditional” components governing basic motion of the vehicle viz.
lateral and longitudinal accelerations and deceleration. Finally, overall en-
ergy management of the entire vehicle is also a concern. Beyond functional
components, the architecture is driven by needs of safety, survivability, fault
tolerant operation, and cost. This includes aspects of redundancy manage-
ment, systematic degradation of available functionality in the presence of
faults, movement of software functionality between similar computational
platforms, and dynamic changes to inter-component data-flows depending on
context and failure conditions. Among these, while redundancy has been a
well-established pattern in the architecture of safety critical systems, the rest
are not yet established. For example, it is common in AUTOSAR to statically
specify inter-component dataflows and their contents. In case an architecture
needs to modify the dataflow routing and content at runtime, all the possible
combinations need to be determined and statically specified, along with the
conditions under which each combination will occur. Then, all the possible

Title Suppressed Due to Excessive Length 35

combinations and their transitions would need be proven safe, to meet cer-
tifiability and standards requirements. This is an excellent example of the
”careful, manually crafted” characteristic of the constructionist approach. It
is also the approach taken by the next generation Integrated Modular Avion-
ics (IMA-2G) architectures, where an architecture reconfiguration is intended
to be triggered by a component referred to as the ’reconfiguration supervisor’
[26]. The approach of prior static definition of all possible combinations, is
easier to certify, compared to the case where the reconfiguration supervisor
contains algorithms to determine a configuration’s safety at runtime, and
uses this to develop potentially new configurations at runtime, which were
not statically evaluated during the system design phase. This latter approach
of evaluating circumstances and generating viable new solutions ”on-the-fly”
is a characteristic of human level reasoning, emulated by experimental con-
structivist AI, but is still a far cry from being implemented in domains like
autonomous driving.

Given the rapid development of autonomous driving technologies and ever
shortening time-to-market needs, a key challenge for automotive architects
is to incorporate newer learning and keep the architecture relevant for the
expected lifetime of the vehicle. Continuous deployment has hitherto not
been a great concern in the automotive domain, but autonomy is pushing
the envelope in this regard. A big obstacle to continuous deployment is the
verification of any proposed changes, to assure system level safety properties
are retained. To some extent, accelerated testing via virtualization techniques
is one mitigating solution, but techniques for correctness-by-construction via
contract based design, modularization, and composability are needed to first
reduce the amount of testing and verification required for any given change.

For autonomous driving, we see the impact of autonomy on systems
engineering to be mostly in the areas of testing, verification, and valida-
tion, and corresponding requirements management. This is driven by three
characteristics of autonomous driving architectures: Newer types of percep-
tion sensors, growing system state space, and complexity of expected opera-
tional scenarios. Perception sensors like cameras, lidars, radars etc. each have
multiple failure modes under various operating conditions. Complex, prob-
abilistic sensor fusion guards against full perception failure to some extent,
but in turn leads to a more complex assurance process and surprising com-
mon points of failure. For example, in one of our projects, similarity in filter
time constants between pre-processing algorithms of two different types of
sensors was questioned as a potential common failure mode. Such informa-
tion is sometimes not even available to the systems integrator. The growth of
system state space and complexity of operational scenarios implies that cap-
turing requirements comprehensively is an additional challenge. Traditional
testing and verification methods can not yield sufficient test coverage within
reasonable timeframes. One solution is accelerated testing by means of 3D
virtual worlds and scripted unit tests. For example, the evaluation of a new
trajectory planning algorithm was conducted in one of our industrial projects

36 Sagar Behere and Martin Törngren

by letting the algorithm drive a virtual vehicle in a synthetic 3D world. An
indication of usefulness of this technique is that approximately a thousand
tests were executed in parallel on a GPU based computing cluster, within
a few hours. Each test executed a different scenario from a scenario library
(for example, traffic intersections, unexpected pedestrians running in front
of the vehicle etc.) and metrics were gathered for each test. The metrics uti-
lize parameters like resulting minimum distance to obstacles, accelerations
within the cabin etc. and help in rapid evaluation of the planning algorithm.
To the best of our knowledge, such testing infrastructure is not common in
traditional automotive OEMs. Beyond testing and verification, we see little
immediate influence of autonomy on systems engineering processes, although
autonomy may demand stricter discipline in their execution. For example,
we see comparatively lower influence to the process of gathering, analyzing,
structuring, and documenting requirements, beyond a rigorous enforcement
of the process itself. Autonomous driving may however give an added push to
development of Intelligent Transport Systems (ITS) and connected systems-
of-systems, increasing the number of stakeholders in the systems engineering
process.

The impact of autonomy on technical implementation tools for au-
tonomous driving is principally the introduction of technologies and platforms
from other domains to the automotive industry. This introduction would, in
turn, drive various ways to make the technologies and platforms more robust,
in line with demands of the automotive domain (e.g. greater emphasis on veri-
fication, diagnosis, error handling etc.). The introduction of Linux in the form
of Android is already occurring in the area of automotive infotainment, but its
use for propulsion guidance, navigation, and control purposes is a relatively
new phenomenon. The Automotive Grade Linux (AGL)[3] is a Linux Founda-
tion workgroup with over 50 members including OEMs, Tier 1s, and system
integrators. Although Linux may not be the final implementation of choice
for safety critical ADAS functions, it is the de facto platform for prototyping,
and also making inroads into solutions for HMI and telematics, which are cru-
cial support functions for automated driving. The usage of silicon (GPUs),
programming libraries, and 3D engines from the computer gaming industry
are instrumental for accelerated testing and verification tooling. Computa-
tion middleware like OROCOS and ROS from the robotics domains, and
communication middleware like DDS and ZeroMQ used in distributed infor-
mation systems are also useful implementation technologies for autonomous
driving. These middleware enable concrete component based software engi-
neering techniques, as well as smarter communication patterns like push-pull,
router-dealer, N-to-M, fan-in, and fan-out. This in turn introduces more op-
tions for technical architecture implementations.

Title Suppressed Due to Excessive Length 37

1.8.3 Concluding remarks and future work

This chapter attempted to provide an overview of the architecture and sys-
tems engineering for autonomous driving, aimed towards the ambitious prac-
titioner. We started by placing autonomous driving within the greater context
of general purpose intelligent, autonomous systems, and highlighted some
philosophical and practical gaps between two in terms of approaches and ar-
chitectures. Despite the fact that the automotive industry practices a bottom-
up approach to the engineering of autonomous driving systems, we believe
it is valuable for practitioners to get ideas from the theories of Artificial
Intelligence, Theory of Mind, Machine Consciousness, and Self-Awareness.

We then presented a functional architecture for autonomous driving, by
introducing the key functional components and a way of connecting them
together in an example architecture. Supporting the architecting efforts are
practices for model based systems engineering. We introduced four model-
ing steps to aid the systems engineering process, each of which needs to be
supported by requirements and test cases for verification and validation. Fi-
nally, we touched upon some key technologies used to prototype autonomous
driving systems.

Future work lies along two dimensions: scientific and documentary. The
scientific part needs to elaborate on the theories and algorithms for adapt-
ing concepts from different domains to autonomous driving, keeping in mind
concerns of safety, certifiability, and engineering processes. The documen-
tary part should add to our ambition for eventually creating a ’Handbook
for Autonomous Driving’. This then needs to provide greater and in-depth
treatment of model taxonomies, listings of architectural and technological
options, as well as guidance for selection and application.

The engineering of Human Machine Interfaces was left unaddressed in this
chapter. From an engineering viewpoint, the functionality offered by the sys-
tem is somewhat distinct from the way it interacts with its users (HMI). But
from the viewpoint of the system’s users, the HMI is the functionality, mak-
ing HMI issues of critical importance to autonomous driving. The topics of
design space exploration and extra-functional metrics for architecture eval-
uation, like cost, reliability, performance, flexibility also deserve an in-depth
treatment.

Finally, the importance of standards and certification of autonomous driv-
ing systems can not be underestimated. Existing functional safety standards
like ISO26262, as well as industry specific norms like MISRA C, AUTOSAR
etc. need to be re-evaluated and upgraded to meet the requirements of au-
tonomous driving.

38 Sagar Behere and Martin Törngren

References

[1] (2007) INCOSE: Systems Engineering Vision 2020, Document No.
INCOSE-TP-2004-004-02, Version 2.03

[2] (2010) Methodology Guidelines When Using EAST-ADL2. Public deliv-
erable 5.1.1 of the ATESST2 project. URL http://www.atesst.org/

home/liblocal/docs/ATESST2_Deliverable_D5.1.1_V1.1.pdf

[3] (2015) Automotive Grade Linux. https://www.automotivelinux.

org/, URL https://www.automotivelinux.org/

[4] (2015) Biologically Inspired Cognitive Architectures (BICA) Society.
The MAPPED Repository. http://bicasociety.org/mapped/, URL
http://bicasociety.org/mapped/

[5] (2015) Distributed Messaging with Zero MQ. http://zeromq.org/,
URL http://zeromq.org/

[6] (2015) FMI: Functional Mock-up Interface. https://www.

fmi-standard.org/, URL https://www.fmi-standard.org/

[7] (2015) IEEE Spectrum. How Google’s Autonomous Car
Passed the First U.S. State Self-Driving Test. http:

//spectrum.ieee.org/transportation/advanced-cars/

how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test,
URL http://spectrum.ieee.org/transportation/advanced-cars/

how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test

[8] (2015) National Highway Traffic Safety Administration - Pre-
liminary Statement of Policy Concerning Automated Vehicles.
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated\

_Vehicles_Policy.pdf, URL http://www.nhtsa.gov/staticfiles/

rulemaking/pdf/Automated_Vehicles_Policy.pdf

[9] (2015) OSLC: Open Services for Lifecycle Collaboration. http://

open-services.net/, URL http://open-services.net/

[10] (2015) Oxford Dictionaries. http://www.oxforddictionaries.

com/definition/english/consciousness, URL http://www.

oxforddictionaries.com/definition/english/consciousness

[11] (2015) SAE J3016: Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems. http://standards.
sae.org/j3016_201401/, URL http://standards.sae.org/j3016_

201401/

[12] (2015) The ARCADIA MBSE method for systems, hardware and
software architectural design. https://www.polarsys.org/capella/

arcadia.html, URL https://www.polarsys.org/capella/arcadia.

html

[13] (2015) The AUTOSAR Platform. http://www.autosar.org/, URL
http://www.autosar.org/

[14] (2015) The Capella Graphical Modeling Workbench. https://www.

polarsys.org/capella/index.html, URL https://www.polarsys.

org/capella/index.html

Title Suppressed Due to Excessive Length 39

[15] (2015) The HAVE-it EU project. Deliverable D12.1 Architec-
ture document. http://haveit-eu.org/LH2Uploads/ItemsContent/

24/HAVEit_212154_D12.1_Public.pdf, URL http://haveit-eu.org/

LH2Uploads/ItemsContent/24/HAVEit_212154_D12.1_Public.pdf

[16] (2015) The OMG MBSE Wiki page on Methodology and Metrics. http:
//www.omgwiki.org/MBSE/doku.php?id=mbse:methodology, URL
http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology

[17] (2015) The OSEK-VDX portal. http://www.osek-vdx.org/, URL
http://www.osek-vdx.org/

[18] (2015) The PREEMPT RT patch for the Linux kernel. Real-Time Linux
Wiki. https://rt.wiki.kernel.org, URL https://rt.wiki.kernel.

org

[19] (2015) The Unreal gaming engine. https://www.unrealengine.com/,
URL https://www.unrealengine.com/

[20] (2015) The Xenomai solution for real-time Linux. http://xenomai.

org/, URL http://xenomai.org/

[21] Albinet A, Boulanger JL, Dubois H, Peraldi-Frati MA, Sorel Y, Van QD
(2007) Model-Based Methodology for Requirements Traceability in Em-
bedded Systems. In: Proceedings of 3rd European Conference on Model
Driven Architecture Foundations and Applications, ECMDA’07, Haifa,
Israel, URL https://hal.inria.fr/inria-00413488

[22] Albus J (1991) Outline for a theory of intelligence. Systems, Man and Cy-
bernetics, IEEE Transactions . . . 21(3):473–509, DOI 10.1109/21.97471,
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=97471http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=97471

[23] Behere S, Törngren M (2014) Architecture challenges for intelligent
autonomous machines: An industrial perspective. In: Proceedings of
the 13th international conference on intelligent autonomous machines,
Springer-Verlag, IAS-13

[24] Behere S, Törngren M (2015) A functional architecture for autonomous
driving. In: Proceedings of the First International Workshop on Auto-
motive Software Architecture, ACM, New York, NY, USA, WASA ’15,
pp 3–10, DOI 10.1145/2752489.2752491, URL http://doi.acm.org/

10.1145/2752489.2752491

[25] Behere S, Törngren M, Chen D (2013) A reference architecture
for cooperative driving. Journal of Systems Architecture 59(10,
Part C):1095 – 1112, DOI http://dx.doi.org/10.1016/j.sysarc.2013.05.
014, URL http://www.sciencedirect.com/science/article/pii/

S1383762113000957, embedded Systems Software Architecture
[26] Bieber P, Boniol F, Boyer M, Noulard E, Pagetti C (2012) New Chal-

lenges for Future Avionic Architectures. Aerospace Lab (4):1–10
[27] Boehm BW (1988) A spiral model of software development and enhance-

ment. Computer 21(5):61–72

40 Sagar Behere and Martin Törngren

[28] Bongard J, Lipson H (2005) Automatic synthesis of multiple internal
models through active exploration. In: AAAI Fall Symposium: From
Reactive to Anticipatory Cognitive Embodied Systems

[29] Bongard J, Zykov V, Lipson H (2006) Resilient machines through con-
tinuous self-modeling. Science 314(5802):1118–1121

[30] Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software
Tools

[31] Braun P, Broy M, Houdek F, Kirchmayr M, Mller M, Penzenstadler B,
Pohl K, Weyer T (2014) Guiding requirements engineering for software-
intensive embedded systems in the automotive industry. Computer Sci-
ence - Research and Development 29(1):21–43

[32] Broy M (2006) Model-driven architecture-centric engineering of (em-
bedded) software intensive systems: modeling theories and architectural
milestones. Innovations in Systems and Software Engineering 3(1):75–
102, DOI 10.1007/s11334-006-0011-y, URL http://link.springer.

com/10.1007/s11334-006-0011-y

[33] Broy M (2007) Two Sides of Structuring Multi-Functional Soft-
ware Systems: Function Hierarchy and Component Architecture. 5th
ACIS International Conference on Software Engineering Research,
Management & Applications (SERA 2007) pp 3–12, DOI 10.1109/
SERA.2007.129, URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=4296910

[34] Broy M (2012) Software and system modeling: Structured multi-view
modeling, specification, design and implementation. In: Hinchey M,
Coyle L (eds) Conquering Complexity, Springer London, pp 309–372

[35] Broy M, Huber F, Paech B, Rumpe B, Spies K (1998) Software and sys-
tem modeling based on a unified formal semantics. In: Broy M, Rumpe B
(eds) Requirements Targeting Software and Systems Engineering, Lec-
ture Notes in Computer Science, vol 1526, Springer Berlin Heidelberg,
pp 43–68

[36] Bruyninckx H (2001) Open robot control software: the OROCOS
project. Proceedings 2001 ICRA IEEE International Conference on
Robotics and Automation (Cat No01CH37164) 3:2523–2528, DOI
10.1109/ROBOT.2001.933002, URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=933002

[37] Burns A (1999) The ravenscar profile. Ada Letters XIX(4):49–52, DOI
10.1145/340396.340450, URL http://doi.acm.org/10.1145/340396.

340450

[38] Chalmers D (1996) The Conscious Mind: In Search of a Fundamental
Theory. Oxford paperbacks, OUP USA

[39] Chella A, Cossentino M, Seidita V, Tona C (2010) An approach for the
design of self-conscious agent for robotics. In: An A, Lingras P, Petty
S, Huang R (eds) Active Media Technology, Lecture Notes in Computer
Science, vol 6335, Springer Berlin Heidelberg, pp 306–317

Title Suppressed Due to Excessive Length 41

[40] Cuenot P, Frey P, Johansson R (2011) The EAST-ADL Architecture
Description Language for Automotive Embedded Software. In: Model-
based engineering of embedded real-time systems, pp 297–307

[41] Davidson D (1990) Turing’s Test. In: Said K (ed) Modelling the Mind,
Oxford University Press

[42] Estefan JA, et al (2007) Survey of model-based systems engineering
(mbse) methodologies. Incose MBSE Focus Group 25:8

[43] Feiler PH, Lewis BA, Vestal S (2006) The SAE Architecture Analysis
and Design Language (AADL) a standard for engineering performance
critical systems. 2006 IEEE Conference on Computer Aided Control
System Design, 2006 IEEE International Conference on Control Ap-
plications, 2006 IEEE International Symposium on Intelligent Control
DOI 10.1109/CACSD-CCA-ISIC.2006.4776814

[44] Ferris T (2009) On the methods of research for systems engineering.
Annual Conference on Systems Engineering Research 2009(April), URL
http://cser.lboro.ac.uk/papers/S10-62.pdf

[45] Ferris T (2012) Engineering Design as Research. In: Mora M, Gelman
O, Steenkamp AL, Raisinghani M (eds) Research Methodologies,
Innovations and Philosophies in Software Systems Engineering and In-
formation Systems, IGI Global, DOI 10.4018/978-1-4666-0179-6, URL
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=

10.4018/978-1-4666-0179-6

[46] Fong T, Thorpe C (2001) Vehicle teleoperation interfaces. Autonomous
Robots 11(1):9–18

[47] Forsberg K, Mooz H (1992) The relationship of systems engineering to
the project cycle. Engineering Management Journal 4(3):36–43

[48] Forsberg K, Mooz H (1995) Application of the vee to incremental and
evolutionary development. Systems Engineering in the Global Market
Place pp 801–808

[49] Frost CR (2011) Challenges and opportunities for autonomous systems
in space. In: Frontiers of Engineering:: Reports on Leading-Edge Engi-
neering from the 2010 Symposium, National Academy of Engineering

[50] Gamez D (2008) Progress in machine consciousness. Consciousness and
Cognition 17(3):887 – 910

[51] Henzinger T, Sifakis J (2006) The embedded systems design challenge.
In: Misra J, Nipkow T, Sekerinski E (eds) FM 2006: Formal Methods,
Lecture Notes in Computer Science, vol 4085, Springer Berlin Heidel-
berg, pp 1–15

[52] Hussain S (2013) Investigating architecture description languages (adls)
a systematic literature review. Master’s thesis, Linköpings universitet,
Sweden

[53] Juarez Dominguez AL (2008) Feature Interaction Detection in the
Automotive Domain. In: 2008 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, IEEE, pp 521–524, DOI

42 Sagar Behere and Martin Törngren

10.1109/ASE.2008.97, URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=4639390

[54] Kang EY, Enoiu EP, Marinescu R, Seceleanu C, Schobbens PY, Pet-
tersson P (2013) A methodology for formal analysis and verification of
east-adl models. Reliability Engineering and System Safety 120:127 –
138, DOI http://dx.doi.org/10.1016/j.ress.2013.06.007

[55] Kopetz H (2008) The Complexity Challenge in Embedded Sys-
tem Design. In: 2008 11th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC), IEEE, pp 3–12, DOI 10.1109/ISORC.2008.14, URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

4519555http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4519555

[56] Lee EA (2009) Computing needs time. Communications of the ACM
52(5):70–79, DOI 10.1145/1506409.1506426, URL http://doi.acm.

org/10.1145/1506409.1506426

[57] Maes P (1987) Concepts and experiments in computational reflection.
In: Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications, ACM, New York, NY, USA, OOPSLA ’87,
pp 147–155, DOI 10.1145/38765.38821, URL http://doi.acm.org/10.

1145/38765.38821

[58] Maier MW, Rechtin E (2000) The Art of Systems Architecting (2Nd
Ed.). CRC Press, Inc., Boca Raton, FL, USA

[59] Malavolta I, Muccini H, Pelliccione P, Tamburri D (2010) Providing ar-
chitectural languages and tools interoperability through model trans-
formation technologies. Software Engineering, IEEE Transactions on
36(1):119–140, DOI 10.1109/TSE.2009.51

[60] Mårtensson J, Alam A, Behere S (2012) The Development of a
Cooperative Heavy-Duty Vehicle for the GCDC 2011: Team Scoop.
IEEE Transactions on Intelligent Transportation Systems 13(3):1033–
1049, DOI 10.1109/TITS.2012.2204876, URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6236179http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6236179

[61] McCarthy J (1995) Making Robots Conscious of Their Mental States. In:
Working Notes of the AAAI Spring Symposium on Representing Mental
States and Mechanisms, Menlo Park, CA

[62] McDermott D (2007) Artificial intelligence and consciousness. In: Zelazo
PD, Moscovitch M, Thompson E (eds) The Cambridge Handbook of
Consciousness, Cambridge University Press, pp 117–150, URL http://

dx.doi.org/10.1017/CBO9780511816789.007, cambridge Books On-
line

[63] Metzger A (2004) Feature interactions in embedded control sys-
tems. Computer Networks 45(5):625–644, DOI 10.1016/j.comnet.
2004.03.002, URL http://linkinghub.elsevier.com/retrieve/pii/

S138912860400043X

Title Suppressed Due to Excessive Length 43

[64] Minsky M (1968) Matter, mind, and models. M L Minsky (ed) Semantic
Information Processing

[65] Montemerlo M, et al (2008) Junior: The Stanford entry in the urban
challenge. Journal of Field Robotics

[66] Nivel E, Thrisson K (2013) Towards a programming paradigm for control
systems with high levels of existential autonomy. In: Khnberger KU,
Rudolph S, Wang P (eds) Artificial General Intelligence, Lecture Notes
in Computer Science, vol 7999, Springer Berlin Heidelberg, pp 78–87

[67] Odersky M, Spoon L, Venners B (2011) Programming in Scala: A Com-
prehensive Step-by-Step Guide, 2Nd Edition, 2nd edn. Artima Incorpo-
ration, USA

[68] Pardo-Castellote G (2003) Omg data-distribution service: Architectural
overview. In: Proceedings of the 2003 IEEE Conference on Military Com-
munications - Volume I, IEEE Computer Society, Washington, DC, USA,
MILCOM’03, pp 242–247

[69] Perotto F, Vicari R, Alvares L (2004) An autonomous intelligent agent
architecture based on constructivist ai. In: Bramer M, Devedzic V (eds)
Artificial Intelligence Applications and Innovations, IFIP International
Federation for Information Processing, vol 154, Springer US, pp 103–115

[70] Quigley M, Conley K, Gerkey B, Faust J, Foote TB, Leibs J, Wheeler R,
Ng AY (2009) ROS: an open-source robot operating system. In: ICRA
Workshop on Open Source Software

[71] Royce WW (1987) Managing the development of large software systems:
Concepts and techniques. In: Proceedings of the 9th International Con-
ference on Software Engineering, IEEE Computer Society Press, Los
Alamitos, CA, USA, ICSE ’87, pp 328–338

[72] Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL).
In: 2011 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, pp 1–4, DOI 10.1109/icra.2011.5980567

[73] Samsonovich AV (2010) Toward a unified catalog of implemented cogni-
tive architectures. In: Proceedings of the 2010 Conference on Biologically
Inspired Cognitive Architectures 2010: Proceedings of the First Annual
Meeting of the BICA Society, IOS Press, Amsterdam, The Netherlands,
The Netherlands, pp 195–244, URL http://dl.acm.org/citation.

cfm?id=1893313.1893352

[74] Sarma S, Dutt N, Gupta P, Nicolau A, Venkatasubramanian N (2014)
On-chip self-awareness using cyberphysical-systems-on-chip (cpsoc). In:
Proceedings of the 2014 International Conference on Hardware/Software
Codesign and System Synthesis, ACM, New York, NY, USA, CODES
’14, pp 22:1–22:3, DOI 10.1145/2656075.2661648, URL http://doi.

acm.org/10.1145/2656075.2661648

[75] Thórisson KR (2009) From constructionist to constructivist ai. In: AAAI
Fall Symposium: Biologically Inspired Cognitive Architectures

[76] Thórisson KR (2012) A New Constructivist AI: From Manual Methods
to Self-Constructive Systems. DOI 10.2991/978-94-91216-62-6\ 9

44 Sagar Behere and Martin Törngren

[77] Thórisson KR (2012) A new constructivist ai: From manual methods
to self-constructive systems. In: Wang P, Goertzel B (eds) Theoretical
Foundations of Artificial General Intelligence, Atlantis Thinking Ma-
chines, vol 4, Atlantis Press, pp 145–171

[78] Thórisson KR, Helgason HP (2012) Cognitive Architectures and Auton-
omy: A Comparative Review. Journal of Artificial General Intelligence
3(2):1–30, DOI 10.2478/v10229-011-0015-3, URL http://dx.doi.org/

10.2478/v10229-011-0015-3

[79] Thórisson KR, Benko H, Abramov D, Arnold A, Maskey S, Vaseekaran A
(2004) Constructionist design methodology for interactive intelligences.
AI Magazine 25(4):77

[80] Törngren M, Qamar A, Biehl M, Loiret F, El-khoury J (2014) Integrating
viewpoints in the development of mechatronic products. Mechatronics
24(7):745 – 762

[81] Turing AM (1950) Computing machinery and intelligence. Mind
59(236):433–460, URL http://www.jstor.org/stable/2251299

[82] Van Gulick R (2014) Consciousness. In: Zalta EN (ed) The Stanford
Encyclopedia of Philosophy, spring 2014 edn

[83] Wallmark O, et al (2014) Design and implementation of an experi-
mental research and concept demonstration vehicle. In: Vehicle Power
and Propulsion Conference (VPPC), 2014 IEEE, pp 1–6, DOI 10.1109/
VPPC.2014.7007042

[84] Westman J, Nyberg M (2013) A Reference Example on the Specification
of Safety Requirements using ISO 26262. In: ROY M (ed) SAFECOMP
2013 - Workshop DECS (ERCIM/EWICS Workshop on Dependable Em-
bedded and Cyber-physical Systems) of the 32nd International Confer-
ence on Computer Safety, Reliability and Security, France, p NA, URL
https://hal.archives-ouvertes.fr/hal-00848610

[85] Westman J, Nyberg M, Törngren M (2013) Structuring safety require-
ments in iso 26262 using contract theory. In: Bitsch F, Guiochet J,
Kaniche M (eds) Computer Safety, Reliability, and Security, Lecture
Notes in Computer Science, vol 8153, Springer Berlin Heidelberg, pp
166–177

[86] Ziegler J, et al (2014) Making bertha drive: An autonomous journey
on a historic route. Intelligent Transportation Systems Magazine, IEEE
6(2):8–20, DOI 10.1109/MITS.2014.2306552

[87] Zima HP, James ML, Springer PL (2011) Fault-tolerant on-board com-
puting for robotic space missions. Concurrency and Computation: Prac-
tice and Experience 23(17):2192–2204, DOI 10.1002/cpe.1768, URL
http://dx.doi.org/10.1002/cpe.1768

