
An architecture pattern for embedded systems autonomy

Sagar Behere1, Martin Törngren1, Jad El-Khoury and DeJiu Chen1

1Department of Machine Design, Kungliga Tekniska Högskolan, Brinellvägen 83, Stockholm, Sweden
{behere,martint,jad,chendj}@kth.se

Keywords: Autonomy, Embedded Systems, Architecture, Multi-level Hierarchical Systems

Abstract: Embedded systems are being increasingly utilized to enable autonomous behavior in machines. Embedded
system architectures must therefore keep pace with the autonomy requirements. In this position paper, we out-
line an architectural approach to complement the most commonly utilized principles for architecting embedded
systems, like decentralization, separation of concerns and loose coupling between subsystems. The approach
provides an explicit pattern for facilitating safe and predictable system level autonomy. It involves the addition
of a single subsystem at the apex of the functional hierarchy in the system. The minimum objectives that need
to be fulfilled by such a subsystem are also presented.

1 INTRODUCTION

Modern machines increasingly incorporate embedded
systems as the backbone of their functionality. The
embedded systems enable advanced functionality in
the machine, more precise and accurate control as
well as the development of features which would be
extremely difficult to realize in any other way. One
such feature is machine autonomy. Autonomy may
be defined as: The ability to operate without human
intervention. Autonomy is a discernible trend in the
evolution of many types of machines. For example,
in a modern car, an increasing number of functions
like changing gears, maintaining speed or distance
to the vehicle ahead, holding lanes et cetera now re-
quire no human intervention. Similarly in aviation,
the evolving functionality of autopilots requires de-
creasing human intervention in the operational phases
of a flight. Embedded systems enable autonomy be-
cause they make it easy to perform computations and
take decisions based on those computations.

Research on autonomous systems is conducted in
broadly two areas: algorithms and architecture. Al-
gorithms typically deal with sensor data perception,
planning, reasoning etc. Architecture typically deals
with the hardware, software, communication and ex-
ecution structures. This paper focuses exclusively on
the architecture aspects of autonomy, with particular
regard to the following two questions:

1. What should the architecture of the embedded
systems incorporated a machine look like, if the
machine should exhibit autonomy?

2. How should the existing embedded systems archi-
tecture of a machine be evolved towards auton-
omy?

Question 2 is of particular interest to designers and
developers of existing commercial products due to
reasons of legacy, cost and prior investment in tech-
nologies and solutions. To take an example from
the automotive domain, the Swedish project ”FUSE”
(which partially funds this work) has an explict goal
to ”..define a migration path from existing vehicle
architectures towards ... reference architecture for
autonomy.”. In another case, the authors have been
approached by a major European vehicle manufac-
turer for conducting research on how its vehicle ar-
chitectures should be evolved, such that it is possi-
ble to undertake safe and standardized integration of
third-party (OEM) autonomy solutions into the vehi-
cle platform.

A general observation is that the integration of
competitively developed subsystems has been the way
to reduce costs in domains such as automotive and
aerospace. This practice is spreading to other do-
mains as well. The integration is aided by architec-
tural principles like system partitioning, good separa-
tion of concerns between subsystems and distributed
and decentralized architectures. The exposition of
these principles, their methodologies and best prac-
tices have received wide coverage in the literature
(Törngren and Wikander, 1978; Kleinrock, 1985;
Schoeffler, 1984; Fielding, 2000; Watkins and Walter,
2007; Eloranta and Hartikainen, ; Guth and D’Epinay,
1983). However, are these principles sufficient or



even adequate to meet the trend of increasing system
level autonomy? In this paper, we argue (in section
2) that the typical decentralized, distributed embed-
ded system architecture is insufficient for the devel-
opment of predictable and safe system level auton-
omy. We then present a practical approach to comple-
ment the existing distributed system design such that
the resulting architecture facilitates system autonomy.
Specifically, the existing architecture of the machine
is treated as a multi-level hierarchical system which
is complemented by the introduction of a single, top
level subsystem at the apex of the hierarchy. The com-
plementing subsystem needs to fulfill some minimal
objectives, which are also described (section 3). We
then present a brief discussion of the approach along
with preliminary evidence of its applicability (section
4) and our conclusion (section 5).

2 APPROACH

2.1 Research Context

In this research, we constrain ourselves to those ma-
chines that reach towards autonomy by means of the
embedded system incorporated within them. This
means that we look at the embedded system as the
sole enabler of machine autonomy. For the purposes
of this text, the term ’embedded system’ refers to the
sum total of all the electronic computing hardware,
software and communications incorporated into the
machine. The embedded system is assumed to be di-
vided into communicating subsystems. The division
may be physical, in the sense of multiple physical
computing units or logical in the sense of sofware
components. The different functions performed by
the embedded system as a whole may be arranged
in a hierarchy, or as a sequence, or functions may
be composed out of multiple sub-functions. Related
functions are usually grouped within the same sub-
system. In practice, these constraints describe a very
wide range of embedded system designs. For exam-
ple, in the automotive domain, the embedded system
of a vehicle consists of multiple Electronic Control
Units (ECUs) all of which are attached to a common
communication bus (see Figure 1), via which they
may interact with each other. Vehicle features like
’Traction Control’ and ’Cruise Control’ may be logi-
cally arranged in a hierarchy as shown in Figure 2.

Such embedded systems are often completely
’distributed’. The system is partitioned into subsys-
tems in a manner which minimizes communication
between the subsystems. Also, a subsystem does not
always need to be aware of the role and functioning

Figure 1: Typical layout of ECUs on a vehicle bus network

of other subsystems, even though it may be exchang-
ing signals and information with them. Such a de-
sign paradigm is termed ’separation of concerns’ in
the literature and is one of the established methods
of managing complexity(Kopetz, 2008). The subsys-
tems in such a design may also be ’loosely coupled’.
A loosely coupled subsystem can send data without
knowing who the receivers are and it may receive data
without knowing who the sender of that data is. Sys-
tem partitioning and loose coupling not only simplify
the design and implementation of the system, they
also reduce the cognitive effort needed to comprehend
and reason about the system behavior(Kopetz, 2008)
while making it easier to implement desirable charac-
teristics like fault isolation and (where required,) sub-
system redundacy. However, we argue (in the forth-
coming section 2.2) that it can be rather difficult on
even outright impossible to impose predictable and
safe system level autonomy on an embedded system
which is comprised solely of a distributed, loosely
coupled aggregate of subsystems. Assuming for the
moment that this argument is valid, how then can the
proven advantages of a loosely coupled, distributed
system be retained, while simultaneously enabling in-
telligent system level autonomy? We propose that
system level autonomy may be conveniently achieved
by the introduction of a single subsystem at the very
top of the functional hierarchy.

Figure 2: Hierarchy of traction and cruise control features
in a vehicle



2.2 Autonomy by means of a supremal
subsystem

We claim that to construct an embedded system which
demonstrates deliberate(i.e. not accidental), pre-
dictable and intelligent system level autonomy, there
needs to be an entity within the system that is charac-
terized by at least the following three abilities
1. The ability to gather relevant information from

within the system

2. The ability to reason about the gathered informa-
tion in relation to the overall goal(s) of the system.
This presupposes a knowledge of the overall pur-
pose the system is constructed for

3. The ability to examine (or at least, query) the ca-
pabilites of individual subsystems and to influence
their working

A principal characteristic of an embedded system that
is comprised solely of a distributed, loosely coupled
aggregate of subsystems is that each subsystem con-
cerns itself with its own narrow area of influence.
There is no subsystem that has an overview of the pur-
pose and status of the entire system as a whole. Fur-
thermore, subsystems are not encouraged to be aware
of the functioning and capabilites of other subsystems
(at least those subsystems which are at the same level
in the hierarchy) and usually have a limited influence
on their operation. Consequently, the widely prac-
ticed and useful technique of system partitioning by
itself runs counter to the requirement of global, sys-
tem level abilities mentioned above. This indicates
that there needs to be some kind of system structure
or principle in addition to partitioning that can permit
the development of intelligent system level autonomy.

At this point, it is important to address an ap-
parently reasonable objection that by enabling a sys-
tematic, ’high-bandwidth’ communication matrix be-
tween the subsystems, they could be made to com-
municate and cooperate in a way that generates sys-
tem level autonomy as an emergent phenomenon. In-
deed, there have been studies in the fields of organi-
zation theory, biological social systems and applica-
tions to robotics and artificial intelligence agents [see
for example (Forrest, 1990; Crutchfield and Mitchell,
1995)] which suggest that the emergence of system
autonomy is a plausible phenomenon and can even
be directed using a careful selection of rules and
heurestics. However, whichever way such designs are
considered, they suffer from drawbacks which nega-
tively affect their selection as an architecture of choice
for safe and predictable autonomous systems
1. System architectures where the communication

matrix is carefully determined and controlled and

within which voluminous data exchange takes
place among the subsystems, are complex to un-
derstand and analyze. This inevitably leads to
subtle errors errors which are difficult (and costly)
to anticipate, trace and eliminate. The massive
state space of such systems leads to challenges in
behavior verification and achieving sufficient test
coverage. Furthermore, this approach does not
scale easily when more and more subsystems are
added to the system.

2. Systems where the communication between the
subsystems is not as well regulated, and where
the subsystems tend to make their own decisions
based on heuristics and the current state, tend to
be sub-optimal and unpredictable in some states
of their operation. This unpredictability consti-
tutes an unacceptable hazard for industrial, com-
merical systems. Few people would get into an
airplane wherein the embedded computers inter-
act in ways that the designers may have not fore-
seen, even though the chances of everything even-
tually working out are high because the system
has been designed that way! Architects of em-
bedded systems generally prefer to have behaviors
which are highly deterministic and demonstrably
hazard free. Indeed, for safety critical and certifi-
able systems this is an absolute requirement.

What is needed then, is a practical architecture for
intelligent, safe and predictable autonomy that com-
bines well-designed, relatively isolated, distributed
subsystems with an entity that is capable of system
level reasoning and action.

So we return to the aforementioned point in this
subsection: What kind of system structure or prin-
ciple in addition to partitioning is needed in order
to permit the development of intelligent system level
autonomy? Consider again the hierarchy shown in
Figure 2. The hierarchy contains a distinguishing
characteristic which makes it a representative of the
very large class of distributed embedded systems with
which we are concerned in this paper. The distin-
guishing characteristic of this hierarchy is the exis-
tence of a family of subsystems, each of which has
its own individual goal. The individual goals are not
necessarily conflicting; indeed during normal opera-
tion the subsystems may collaborate to generate some
predefined system behavior. However, in case of a
conflict, none of the subsystems has the capabilities
to resolve the conflict. The subsystems utterly lack
the three abilities introduced at the start of this sub-
section. Our approach is to introduce a single ’supre-
mal subsystem’ as shown in Figure 3 which incorpo-
rates an entity that reifies those three abilities. The
term ’supremal’ is borrowed from (Mesarovic et al.,



1970), which refers to, ”..higher level subsystems as
supremal units while the subsystems on the lower lev-
els are termed infimal units.” The addition of a single1

supremal unit as the apex of a hierarchy effectively
makes the system into a ”multi-echelon type system”
as described by (Mesarovic et al., 1970), who argue
that, ”The existence of a supremal unit is the prin-
cipal charactersitic of multi-echelon systems.”. The
formal, mathematical analysis of multi-echelon sys-
tems can then be applied to this architecture. In par-
ticular, we believe that the following three items are
of interest to the architecture of autonomous systems
1. The assignment of tasks and roles to the vari-

ous hierarchical levels and their individual sub-
systems.

2. The definition of interfaces within the hierarchy.

3. The rules according to which the supremal units
can intervene and coordinate the functioning of
the infimal units.

Figure 3: Adding a single supremal unit to the hierarchy

While specific answers to the above will always be
application and implementation specific, we believe
that it is possible to develop a generalized set of prin-
ciples at a level of abstraction that can be applied to
the creation of reference architectures for particular
autonomous systems.

To recapitulate the ideas in this section
• Distributed embedded systems constructed on the

prevalent principles of separation of concerns and
system partitioning have insufficient structure to
develop predictable and safe autonomy

• There needs to be a single entity within the system
boundary which is capable of gathering, reasoning
and acting on system level concerns.

• The approach of adding of a single supremal sub-
system to top off an existing hierarchy retains the

1If, instead of a single unit, there are multiple supremal
units at the top of the hierarchy, the question of conflict res-
olution between them reappears and the entire argument is
reduced once again to the old one.

advantages of an existing distributed architetcture
while providing a formally tractable engineering
solution to the problem of evolving that architc-
ture towards autonomy.

However, merely stating, ”Stick a subsystem on top”
provides little value. In the next section, we provide
some details regarding the minimum objectives of the
supremal subsystem vis-à-vis the desire for system
level autonomy.

3 MINIMUM OBJECTIVES OF
THE SUPREMAL SUBSYSTEM

The motivation for inclusion of a supremal subsys-
tem in the architecture includes the idea that the sub-
system knows about the purpose of the system as a
whole and the possible desires of the user with re-
spect to the system’s behavior. The subsystem would
also be aware of the other subsystems present in the
system, their roles and capabilities and it would have
the knowledge to orchestrate the functioning of those
subsystems with the ultimate intention of generating
the desired system level behavior. With this in mind,
we propose that the supremal subsystem must contain
structures to satisfy at least the following objectives:

Interaction with the user The user’s commands
need to be translated into system behavior. Most
of the commands need to be filtered through the
supremal subsystem, which can translate them
into inputs suitable for infimal subsystems. In
existing distributed systems, the user commands
are often communicated directly to a specific
subsystem, whereupon the subsystem may react
without considering the state of other subsystems
or how they might be affected (Consider a car:
The user has pressed the accelerator pedal. The
pedal position is mapped to fuel quantity injected
into the engine. More the pedal is pressed, more
the fuel sent to the engine. But what if the parking
brake was on? Should the engine check on the
brake? Let’s say it does.. but what if the user is
going uphill with a heavy load and has engaged
the parking brake to prevent a backward slide
while stopped?). In order to correctly interact
with the user, the supremal subsystem needs a
model of the user interactions and the semantics
of possible inputs vis-à-vis system behavior.

Understanding subsystem capabilities The supre-
mal subsystem must be able to query the infimal
subsystems with an intent to understand their ca-
pabilities and the functionality with which they



contribute to the overall system behavior. Per-
haps there are multiple subsystems with the same
roles but which perform them with differing Qual-
ity of Service(QoS). Perhaps the functionality of
multiple subsystems can be efficiently combined
to yield a greater QoS. Such knowledge is re-
quired when orchestrating the infimal subsystems
to achieve a user specified system behavior.

Translating user commands to subsystem inputs
Depending on the user interaction model, the user
inputs may enter the system in a variety of forms.
This could range from voice inputs and facial
recognition techniques to the states of levers,
pedals, buttons or switches being manipulated by
the user. The supremal subsystem should have
the capabilities of interpreting the various inputs
with regard to the system behavior. For example,
if the user presses on the accelerator pedal of
the car, the supremal subsystem may interpret
that input as the desire to increase the velocity
of longitudinal motion. This interpretation is
the basis of subsequent interventions and coor-
dinations of the infimal subsystems, which may
involve substantial and recurring planning and
sequencing operations.

Active monitoring and control of infimal subsystems
This is related to regular operation of the system.
It deals with the lifecycle management of the
infimal subsystems, diagnosing error states and
assessing their impact on system capabilities
handling asynchronous requests from the infimal
subsystems, generating short term goals for and
coordinating the execution of infimal subsystems
and resolving conflicts.

Minimize own workload Finally, one of the most
important functions the supremal subsystem
needs to perform is to minimize its own work-
load. Given the overriding influence the supre-
mal subsystem has, it is tempting and easy to
push all sorts of functionality into it. However,
the goal is to design the architecture such that the
infimal subsystems actually perform most of the
work with as less interference from the supremal
subsystem as possible. Therefore, the supremal
subsystem should be able to set goals and then
hand off the execution of those goals, reserving
intervention to exceptional circumstances. This
requires, among other things, well-defined system
initialization, hand over procedures and trading of
responsibilities between the supremal and infimal
subsystems.

4 DISCUSSION AND
PRELIMINARY EVIDENCE

The approach of introducing a single supremal sub-
system in order to facilitate autonomy can be applied
not just to the system level, but also to the individ-
ual subsystems, where each subsystem is considered
as a system in itself. Thus, an autonomous system
may be composed out of multiple autonomous and
non-autonomous subsystems. Equally likely is the
scenario that a non-autonomous system includes (par-
tially) autonomous subsystems. This is the case in a
modern car, for example, where subsystems like Ac-
tive Safety are architected as a hierarchy with a single
’Active Safety Coordinator’ function at the top.

The intervention and coordination influence of the
supremal subsystem is not restricted to the infimal
subsystems in the hierarchical layer immediately be-
low it. Subsystems on any level may be able to tra-
verse through the hierarchy either through the interim
levels or by directly reaching out to the lower levels.
This is true of all multi-level, hierarchical systems in
general.

It must be emphasized that the introducion of the
single supremal subsystem is not a sufficient condi-
tion to reach autonomy, even from an ’architecture
only’ perspective. Complex, safety critical industrial
embedded systems are affected by an extremely wide
range of concerns like scalabality, performance, de-
velopment methodology, certification requirements,
maintainability, robustness etc. The value of the sin-
gle supremal subsystem lies in the fact that in its ab-
sence, it is difficult to reach autonomy at all in a dis-
tributed, well-partitioned embedded system. Thus, it
should be seen as a first and necessary step towards
the solution, rather than the solution in itself.

Our approach has some similarities and differ-
ences to the concept of ’centralized control’ in the lit-
erature. Even though the single supremal subsystem
is responsible for the overall system behavior, the sub-
systems that actually realize most of the system func-
tionality are still distributed. In fact, the minimization
of tasks which the supremal subsystem should per-
form is an important goal for the architect. As much
functionality as possible should be pushed out to the
infimal units.

Even in the area of decentralized autonomy of
large systems, it has been argued (Kopetz, 2003) that
the constituent units of abstraction need to be au-
tonomous in and by themselves. Thus, our suggested
approach does not run counter to decentralization, but
can be applied to the design of autonomous systems
that collectively make up the decentralized systems.

A significant prior work conducted by the authors



was the creation of a reference architecture for coop-
erative driving (Behere et al., 2013). The work re-
sulted in the creation of a vehicle subsystem that en-
able autonomous vehicle operation under specific cir-
cumstances. Reinterpreting that work from the per-
spective of the proposed approach shows that the ref-
erence architecture was essentially the single supre-
mal unit at the top of a hierarchy of vehicle propulsion
subsystems. The internal structure of the reference
architecture closely followed the structures described
in section 3. Specifically, the reference architecture
interacted with the vehicle operator, interpreting the
commands and controlling the underlying brake and
cruise control subsystems, while minimizing its own
workload.

Informal discussions with practicing engineers
have, on a number of occasions, revealed similari-
ties between their work and our approach when their
projects demanded elements of autonomy. Specific
architectures for certain spacecraft and automation
systems as well as some architectures for control of
hybrid and intelligent systems(cf. (Albus and Proctor,
1996)) also show a similar approach. We see this as
evidence of the wide utility of the suggested approach
and our ongoing efforts are directed towards making
the pattern explicit so that it is available as a ready
reference, rather than knowledge which needs to be
gleaned from case studies and experience.

5 CONCLUSION

Distributed embedded system architectures with good
separation of concerns are highly recommended in
the state of practice. In this paper, we have argued
that such architectures are insufficient when it comes
to generating intelligent system level autonomy while
retaining characteristics like safety, predictability, ef-
ficiency and certifiability. We have proposed an ap-
proach to complement the distributed design in order
to facilitate system autonomy. This approach involves
the introduction of a single subsystem to top off the
system hierarchy. The minimal objectives to be ful-
filled by this subsystem have also been presented.
We believe that this architectural pattern is applied
in practice by engineers in many situations, without
fully realising its rationale and potential. Our work
aims to make the pattern more explicit in the con-
text of autonomous architectures, explains the driv-
ing forces behind it and is the basis of ongoing work
related to formalized reference architectures for au-
tonomous embedded systems.

ACKNOWLEDGEMENTS

The work presented in this paper has been partially
funded by the EIT ICT Labs project CPSE (Cyber-
Physical Systems Engineering) and the Swedish VIN-
NOVA/FFI program supporting the FUSE project.
The authors would like to gratefully acknowledge the
support.

REFERENCES

Albus, J. and Proctor, F. (1996). A reference model archi-
tecture for intelligent hybrid control systems. In Pro-
ceedings of the 1996 Triennial World Congress, Inter-
national Federation of Automatic Control (IFAC).

Behere, S., Törngren, M., and Chen, D. (2013). A refer-
ence architecture for cooperative driving. Journal of
Systems Architecture.

Crutchfield, J. P. and Mitchell, M. (1995). The evolution of
emergent computation. Proceedings of the National
Academy of Sciences of the United States of America,
92(23):10742–6.

Eloranta, V. and Hartikainen, V. Patterns for distributed em-
bedded control system software architecture.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis.

Forrest, S. (1990). Emergent computation: self-organizing,
collective, and cooperative phenomena in natural and
artificial computing networks: introduction to the.
Physica D: Nonlinear Phenomena, 42:1–11.

Guth, R. and D’Epinay, L. (1983). The Distributed Data
Flow Aspect of Industrial Computer Systems. In 5th
IFAC Workshop on Distributed Computer Control Sys-
tems, Sabi-Sabi.

Kleinrock, L. (1985). Distributed Systems. Computer,
18(11):90–103.

Kopetz, H. (2003). The future of autonomous decentralized
systems. The Sixth International Symposium on Au-
tonomous Decentralized Systems, 2003. ISADS 2003.,
page 329.

Kopetz, H. (2008). The Complexity Challenge in Embed-
ded System Design. In 2008 11th IEEE International
Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC), pages 3–12.
IEEE.

Mesarovic, M., Macko, D., and Takahara, Y. (1970). Theory
of Hierarchical, Multilevel Systems. Academic Press.

Schoeffler, J. D. (1984). Distributed Computer Systems for
Industrial Process Control. Computer, 17(2):11–18.

Törngren, M. and Wikander, J. (1978). A decentralization
methodology for real-time control applications. Com-
munication.

Watkins, C. B. and Walter, R. (2007). Transitioning from
federated avionics architectures to Integrated Modular
Avionics. In 2007 IEEE/AIAA 26th Digital Avionics
Systems Conference, pages 2.A.1–1–2.A.1–10. IEEE.


