Architecture challenges for intelligent
autonomous machines

An industrial perspective

Sagar Behere!, Fredrik Asplund!, Andreas Séderberg?, and Martin Térngren!

! KTH The Royal Institute of Technology, Stockholm, Sweden
2 The SP Technical Research Institute, Sweden

Abstract. Machines are displaying a trend of increasing autonomy. This
has a far reaching impact on the architectures of the embedded systems
within the machine. The impact needs to be clearly understood and
the main obstacles to autonomy need to be identified. The obstacles,
especially from an industrial perspective, are not just technological but
also relate to system aspects like certification, development processes and
product safety. In this paper, we identify and discuss some of the main
obstacles to autonomy from the viewpoint of technical specialists working
on advanced industrial product development. The identified obstacles
cover topics like world modeling, user interaction, complexity and system
safety.

Keywords: Autonomy, Architecture, Embedded Systems

1 Introduction

Many machines which incorporate embedded systems display a trend of increas-
ing autonomy. Autonomy, in practice, can be considered as the machine’s ability
to operate without constant human supervision/intervention. In this paper, the
main emphasis is to identify and discuss key challenges for architectures of au-
tonomous machines.

Although autonomy has been traditionally associated with robotics and "dirty,
dull and dangerous" work loads, it is now moving to all kinds of domains, driven
by environmental, efficiency and safety considerations[1]. To exemplify the trend
of increasing autonomy, consider the evolution of the personal automobile. The
automatic transmission was one of the early subsystems that no longer needed
constant human supervision. Therefore, it may be considered autonomous by our
definition. Another feature that became popular with the advent of electronic
controllers within the automobile is cruise control. Cruise control removed the
need for constant human supervision to maintain the speed of the automobile.
The cruise control feature evolved to Adaptive Cruise Control (ACC) which not
only regulates speed, but also maintains a safe distance to the vehicle ahead.

ACC systems are currently evolving toward Cooperative Adaptive Cruise Con-
trol (CACC) and Advanced Driver Assistance Systems (ADAS) which are ex-
pected to eventually deliver total propulsion autonomy, when combined with
other subsystems like lane-control, traction control, pedestrian safety, active col-
lision avoidance, etc.

One way to generate autonomous behavior in a system is to make the system
intelligent. Intelligence, as defined in [2], is "..the ability of a system to act
appropriately in an uncertain environment. Appropriate action is that which
increases the probability of success. Success is the achievement of behavioral sub-
goals that support the system’s ultimate goal”. The system’s ultimate goal and the
criteria of success may be defined external to the intelligent system. For example,
the ultimate goal of an intelligent, autonomous car may be to transport the user
from point A to point B within a city, with the criteria of success being zero
accidents and strict adherence to local traffic laws. The goal and the success
criteria are defined by the user of the car, not by the car itself.

It should be noted that, strictly speaking, autonomy does not imply intelli-
gence. Intelligence may imply autonomy, but may also imply partial autonomy
along with humans in the loop, for selected decisions and actions. What in-
telligent autonomy does imply, however, is the presence of decisional processes
within the machine. The notions of deliberation, planning and decision-making
are inextricably a part of intelligent machine autonomy.

The achievement of intelligent machine autonomy requires substantial tech-
nical results from primarily two areas: Algorithms and Architecture. Algorithms
encode the formal, mathematical knowledge for solving specific problems in a
series of computation steps. For example, a sensor fusion algorithm may be used
to estimate the current acceleration in an automobile. The Architecture, on the
other hand, provides all the necessary principles and infrastructure for executing
the algorithms, modularizing the system and communicating data to/from the
executing algorithms. A third requirement, from the perspective of industrial
adoption, is the availability of cost effective sensors.

In this paper, we focus exclusively on architectures for intelligent autonomous
systems. In particular, we present some key challenges for these architectures,
from the perspective of industrial product development. This perspective is con-
cerned with the development of products that may be mass produced and sold
to end users. Therefore, it has to emphasize topics like safety, certification, de-
velopment methodology, standards compliance, reliability and cost effectiveness.
The challenges presented in this paper were partly elicited from a workshop[3]
conducted at KTH The Royal Institute of Technology in Stockholm, Sweden.
The workshop covered topics like bottlenecks to autonomy, safety/certification
and verification of autonomous products. It was attended by about 65 partici-
pants, most of whom were senior system architects from a broad cross-section
of Swedish industry, including automotive, aviation, telecom and industrial au-
tomation.

The rest of this paper is organized as follows: section 2 provides a brief de-
scription of the term ’system architecture’ and its various aspects, in order to

provide an unambiguous context for the entire paper. Section 3 presents some
of the bottlenecks to achieving system autonomy, from an architectural perspec-
tive. It includes, among other things, a discussion of user interaction, system
complexity, safety and safety standards. Finally, Section 4 has a brief discussion
on the way forward towards autonomy.

2 Overview of System Architecture

The term ’architecture’ is described by ISO042010:2011 as "fundamental concepts
or properties of a system in its environment, embodied in its elements, relation-
ships and principles of its design and evolution.”. In practice, one way to think
of system architecture is to decompose it into its conceptual and technical design
aspects[4, 5], as shown in Figure 1.

Architecture

Safety Technical
Reliability ‘mapped_
Robustness Ty
Predictability| |seryice Taxonomy —— ‘ ’ Software darduare ‘ LEGACY
Cost — I .
cas % % realizeS e) deployed—
S not_gictd™ Partitioning

Computation Communication

Time Space

Fig. 1. An overview of system architecture

The content of Figure 1 as well as the description of the content that follows,
should by no means be construed as comprehensive. However, it provides an
overview with sufficient detail to begin reasoning about system intelligence and
autonomy.

Service Taxonomy describes the hierarchy of services/features as seen by the
user of the system. It describes the externally visible (sub-)behaviors of the
system without any reference to how they are internally realized.

Logical architecture shows the logical decomposition of the system into its com-
ponents|[6] and sub-components as well as the data-flows between them. It
is commonly referred to as the ’system block diagram’ and it realizes the
behavior/features defined by the service taxonomy. However, no mention is
made of how the system components are actually implemented in terms of
software and hardware.

Software architecture describes all the software code (components, services,
layers, middleware, ...) within the system. Relevant blocks of the logical
architecture are mapped onto individual pieces of software code which realizes
the functionality of the blocks.

Hardware architecture describes the individual computer processing units and
the communication channels between them. The software architecture is de-
ployed on the hardware architecture.

Early system architectures consisted of the independent development of fea-
tures in self-contained hardware platforms connected to a common communica-
tion bus. Such architectures are known as federated architectures|7]. In recent
times, the trend is to permit a single hardware computer unit to execute multi-
ple software tasks each of which may realize different system features and may
have different criticality. This is achieved by means of robust mechanisms that
partition and allocate resources like processor cycles, memory, i/o, communica-
tion channels etc. in space and time among the individual software tasks. For
example, one processor may execute a set of 5 tasks, where each task executes
for a fixed period of time and then gets replaced by the next task in the set.
Such architectures which provide shared and partitioned access to resources are
termed integrated architectures[8]. Integrated architectures offer substantial
benefits in terms of cost, resource utilization and weight saving. On the other
hand, they also necessitate careful management of resources and make it more
difficult to analyze and assure overall system behavior.

A system architecture is additionally characterized by the so called ’extra-
functional’ properties like system safety, reliability, maintainability, evolvability,
etc. These extra-functional properties are applicable across the entire system
design and are influenced by decisions made throughout the conceptual and
technical architecture. Furthermore, modern industrial product architectures are
rarely ’clean-sheet’ designs and therefore a significant concern in systems archi-
tecting is the integration of legacy designs into the architecture. An example of
architecture legacy is that in many automobiles, the cruise control subsystem is
still a part of the engine management system for historic reasons.

Industrial exploitation of architecture depends on the simultaneous avail-
ability of principles, technologies and tools. Academic research on system ar-
chitectures usually emphasizes the principles, whereas practicing engineers need
reliable tools to implement the principles and technologies.

Given the above understanding of system architecture, a relevant question is:
Where to start with system autonomy? The subsequent sections present some of
the identified challenges to system autonomy, from the architectural perspective.

3 Autonomy bottlenecks

The bottlenecks identified in this section are not exclusive to autonomous sys-
tems alone, but they are especially pertinent to safety critical autonomous sys-
tems.

3.1 Constructing and maintaining the world model

Intelligent autonomous systems need a model of their internal and external en-
vironments to correctly reason about action choices and make decisions. At all
times, the model needs to reflect the real environment, typically via strong sta-
tistical correlations. For example, the correctness of decisions and actions made
by a self-driving car depends heavily on the accuracy of the road objects (lane
markers, traffic lights etc.), other vehicles and pedestrians populating its world
model at every time instant. The world model of any moderately complex system
is usually maintained by fusing redundant or partially overlapping sensor data.
The self-driving car for instance, may rely on a combination of vision, radar,
lidar and/or laser sensor data. Each sensor operates optimally under specific
conditions and it is a challenge to ensure that the set of sensors as a whole can
lead to a high-confidence world model under all conceivable operating conditions.
Furthermore, sensors can fail and the systems needs to know the degradation of
the world model to continue making correct decisions.

Although the fusing of sensor data to construct accurate and reliable world
models is largely a matter for algorithms, there are several architecture issues
surrounding the topic. Subsystems may require partial world models containing
only the information necessary for the subsystem operation. The same infor-
mation may be needed by several subsystems, but in differing representations.
Simultaneously, it may be desirable to have a global, common world model to
prevent, unnecessary, replicated model building activities within individual sub-
systems and to have a single source of data. But the subsystems may require
the model information with differing Quality of Service (QoS) requirements. For
example, an active safety system needs to know information about detected on-
coming vehicles with greater accuracy and frequency than a Human Machine
Interface (HMI). Some subsystems may require historical information. Should
the subsystem maintain that itself or should it be part of a common global
world model? (The answer to that depends, among other things, on the number
of current and future subsystems that need historical information.) Should the
partial word models within individual subsystem be gathered together to form
a common global model? Or should relevant parts of the global world model be
"projected" into individual subsystems? Should a global world model be im-
plemented in a distributed, redundant way? What about security and access
control to the model information? Who are the readers, who are the writers,
how to manage simultaneous conflicting writes... these are all questions relevant
to the system architecture.

From the perspective of autonomous systems, it therefore becomes relevant
to explore the design patterns, technologies and tools to build such world models.

3.2 User interaction

An autonomous system must necessarily reduce the user engagement required
for system operation. If the required user engagement is maintained or higher,
autonomy provides no immediate benefit. At the same time, the system needs

to conduct its operations with maximum transparency, so that the user is aware
of what is going on. Unfortunately, it is not always clear what ’transparency’
implies, nor do established norms exist to achieve it. An example of this can
be taken from the aviation domain (which is particularly rich in such exam-
ples), with regards to the differences in throttle lever movement between modern
Boeing and Airbus aircraft. The throttle levers in Boeing aircraft move during
autopilot operation, providing a ready visual indication of autopilot activity.
Airbus aircraft (the A320+ series) however have throttle levers which can be
set to one of several ’gated’ positions and do not move, regardless of autopilot
activity. After two decades of debate, there is no clear consensus on which design
is ’clearly better’.

Extensive discussions on introducing autonomy, whether the introduced au-
tonomy should be high or low, and the exact role of autonomy are especially
common in the aviation domain, within the larger discourse on automation[9].
Several perspectives on how to approach automation continue to coexist. These
perspectives range from the long-held belief that automation should be matched
to functions unsuitable for human control[10] to the more recent view that auto-
mated systems may be analyzed as team members[9]. Each perspective highlights
different user interaction problems which are very much relevant to the discus-
sion of autonomy, such as mode confusion[11,12], moving interaction to times
of high workload, failure after reaching or nearing the point of no return, au-
tomation bias, etc. While the discussions so far have provided balanced views on
automation(autonomy), clear consensus on user interaction remains elusive.

Automation and autonomy, though intended to enhance human capabili-
ties, often degrade them. For example, a recent Federal Aviation Administration
(FAA) report[13] concludes that for pilots, in addition to degradation of basic
‘stick-and-rudder’ flying skills, autoflight systems could lead to degradation of
the pilot’s ability to quickly recover the aircraft from an undesired state. Worse
still, lack of consensus on user interaction leads to functionally similar, yet sub-
tly different autonomous systems. This makes it problematic to rely on past
experience when human operators migrate between similar systems. Relying on
faulty automation might easily be framed as over-reliance and misuse, while re-
lying on correct automation that still allows for mistakes might be framed as
under-reliance or disuse[9]. Focusing primarily on the human-in-the-loop as the
problem is too frequently a "convenient solution".

From the perspective of autonomous systems, it therefore becomes relevant to
explore flexible architectures that allow for different user interaction paradigms
while maintaining maximum transparency and a meaningful exposure of error
handling strategies such as graceful degradation.

3.3 Complexity and Feature Interaction

The critical concerns of world modeling and user interaction highlighted above,
pinpoint another problem area. Federated and integrated architectures are meant
to decentralize the logical architecture and allow for treating different function-
ality in isolation. However, autonomy seems to be pushing in the other direction,

requiring an increased communication between different subsystems. The result
is an increased architectural complexity, where the architecture is required to
simultaneously isolate and bring together different parts of the system. This,
coupled with the increasing number of (often conflicting) goals within an au-
tonomous system, significantly raises the cognitive complezity[14] of the system.
Increasing complexity has a direct and negative impact on test case coverage,
verification and validation of the system.

One of the consequences of complexity is feature interaction. A feature inter-
action is said to occur when the operation of a subsystem /feature interferes with
the operation of another subsystem /feature leading to unexpected and undesir-
able system level behavior[15, 16]. An example of feature interaction in the auto-
motive domain would be the simultaneous activation of the brakes and throttle.
For cyber-physical systems in particular, the external physical environment of-
ten 'completes the loop’[17]. For the brake and throttle example just mentioned,
the two subsystems may be completely independent in their operation, but the
physical laws of the external world dictate that their operation affects one and
the same variable viz. the vehicle’s speed.

The feature interaction problem needs to be jointly considered by both algo-
rithms and architecture. From an architectural perspective, it can be addressed
by two complementary approaches[18]. The first approach is ’correctness by con-
struction’ which refers to the principles and mechanisms of composing systems
out of subsystems in a way that there are no unexpected side effects or emer-
gent behavior. The complementing approach is to formally represent both the
architecture and a feature interaction and use model checking and verification
methods to search for the feature interaction in the architecture. Once found,
the interaction can be eliminated by a variety of problem specific approaches.
Both the approaches above seek to detect and eliminate feature interactions
during the design phase. However, all feature interactions may not be detected
or eliminated and therefore intelligent autonomous systems need mechanisms to
resolve feature interactions during system operation (a.k.a ’runtime’). Several
ways have been proposed to detect and resolve feature interactions at runtime,
mostly within networking and telecom domains(example: [19, 20]), however their
applicability to industrial embedded systems has been limited by the required
guarantees for robustness and safety.

3.4 ’Extra-functional’ properties

Extra-functional properties are those characteristics of the system which are not
directly related to the functionality offered by the system to its user. They are
often related to the quality attributes of the system. Examples of extra-functional
properties are safety, reliability, maintainability, flexibility etc. Autonomy has
a significant impact on the machine’s architecture and consequently the extra-
functional properties are also affected. As an example, safety (defined as freedom
from unacceptable risk|[21]), is profoundly impacted by the bottlenecks discussed
so far in this paper. This subsection presents a quick overview of selected extra-
functional properties that affect autonomous architectures.

Redundancy Safety engineers frequently rely on the availability of a human
operator to take control, in case the system is unable to cope with its operational
environment. The user interaction problems associated with autonomy, along
with the fact that a human may simply not be available to take control, means
that autonomous systems need to be designed to a greater degree of robustness.
Such robustness is often added by means of providing redundancy for critical
sensors, actuators as well as communication and computation facilities.

Adding redundancy to existing systems brings up sensitive issues related
to cost. Also, existing machinery often simply lacks the physical space to ac-
commodate redundant units (geometry constraints). Therefore, application of
traditional redundancy measures is often not feasible for evolving autonomous
architectures. New thinking is needed to add redundancy to the architecture
while avoiding mere replication of the subsystems under question. Research
related to dynamically reconfigurable embedded systems may yield promising
results for this area. This would make it possible, for example, to migrate at
runtime, software executing on a failing hardware unit to another hardware unit
which was hitherto in ’hot standby’ mode. Architectures like IMA-2G within the
avionics domain already have limited reconfigurability as one of the development
goals[22].

Architectures can also be setup to exploit the inherent redundancy manifested
by many machines. For example, the engine in modern heavy vehicles is already
used for braking; in a multi-engine aircraft, differential thrust can be used for
directional control.

Determinism /Predictability Safety critical systems are usually required to
demonstrate deterministic operation. For autonomous systems, it is a matter of
debate and semantics whether autonomy involves a tradeoff with determinism.
It is clear, however, that the issue of complexity discussed in subsection 3.3 will
make it more difficult to establish determinism.

Furthermore, while the overall behavior of an autonomous system may re-
main predictable within certain boundaries, the system may not be absolutely
deterministic within those bounds. For example, it may be assured that the col-
lision avoidance function of an automotive active safety system will make a best
effort to avoid a head-on collision with an oncoming vehicle. However, the exact
trajectory which the vehicle will undertake depends on many factors and cannot
be deterministically calculated in advance.

If the behavior of an individual machine can not be deterministically pre-
dicted, it is unlikely that the interactions of that machine with a heterogeneous
mix of other autonomous, manual and remotely operated machines will be deter-
ministic. Such interaction scenarios are already being envisioned in, for example,
upcoming Intelligent Transport Systems (ITS) where (semi-)autonomous vehi-
cles will coexist with those having human drivers.

This leaves designers and architects with an open question: What is the
extent of permissible unpredictability within the system? This question is not
explicitly answered by standards and certification requirements.

Safety Standards for autonomous systems Safety-related concerns are
likely to result in requirements for new ways to develop and assure the safety of
intelligent, autonomous systems. This might require updates to safety standards,
such as:

— IEC 61508[21]. This standard is applicable to most safety-related control
systems. It specifies different sets of requirements on the design and devel-
opment of end products based on the required Risk Reduction Level (RRL),
i.e. based on the perceived criticality of the end product. These levels are
called safety integrity levels (SIL) with SIL 1 providing the lowest risk re-
duction and SIL 4 the highest.

— ISO 26262[23]. This standard is a specialized version of IEC 61508, adopted
to the automotive domain. In this standard the RRLs are called Automotive
SIL (ASIL), with ASIL A providing the lowest risk reduction and ASIL D
the highest.

— ISO 13849-1[24]. This standard is only applicable on machinery, as defined
in 2006/42/EC (the European machinery directive). In this standard the
RRLs are called Performance Levels (PL), with PL A providing the lowest
risk reduction and PL E the highest.

None of these standards are immediately applicable to autonomous systems.
The main reason for this is that they rely on techniques for hazard and risk
analysis in which human involvement is an important factor in the RRL estima-
tion. ISO2626 for instance directly uses the anticipated capability of a driver to
control unexpected vehicle behavior caused by major system failure as a major
input to calculating the required RRL (ASIL) on the system. This reasoning is
not applicable for autonomous and intelligent functions. It is not reasonable to
assume that the driver has his total attention fixed on the current traffic situation
if he is traveling in an autonomous car. On the other hand, increased intelligence
could be made to partially replicate the actions provided by an expert human
operator. However, this would require changes to the safety standards in terms
of new concepts of controllability where the machine intelligence replaces the
human being.

Another reason is the complexity of the environment in which many au-
tonomous functions will operate or are expected to operate in within the im-
mediate future. An important example of such an environment is the Intelligent
Transportation System, which is expected to be deployed in the EU during the
upcoming decade. With the standards above calling for a worst-case analysis
centered on each separate vehicle many of the envisioned benefits in regard to
traffic efficiency might be lost, for instance by enforcing safety margins with un-
necessarily low speed or large distance restrictions between vehicles. Such kinds
of safety margins can also lead to conditions where the transport system as a
whole is prone to unacceptable high risks, mainly due to the fact that a violation
of such safety margins is often not really risky in many practical situations. If
the drivers of individual vehicles can bypass the functions implementing such
safety margins to the benefits of the practical situations, they are likely to start
doing so.

A third reason is that architectures for safety critical systems strongly empha-
size static specification. Usually, system components and their inter-connections,
communication channels and the data exchanged over those channels are all spec-
ified prior to system execution and cannot be changed at runtime. Autonomous
systems on the other hand can benefit from dynamic, self-adapting and self-
evolving architectures that respond to the operational situation and environmen-
tal inputs. Components can be started and shut down as the system functions,
the inter-component connections can be modified at runtime, data-flows can be
rerouted and executing code could be migrated from one component to another.
Such dynamism is not permitted by existing safety standards and certification
processes, mostly because of the impact on determinism /predictability.

4 Discussion

In order to satisfactorily address the autonomy challenge, it is necessary to in-
vestigate the implications of autonomy on different aspects of the system archi-
tecture. Where do crucial shortcomings exist? What are the immediate bottle-
necks? From an industrial perspective, which solutions will yield the greatest
usable results? Within a specified industrial domain (e.g. Automotive) is there
an identified prioritization of issues obstructing autonomous behavior? These
were some of the questions posed during our workshop on Autonomy. This pa-
per has provided an initial overview of the pertinent challenges for industrial
autonomous machines.

Autonomy requirements drive the adoption of new design principles and tech-
nologies, and often necessitate restructuring of the hierarchies and organization
of existing systems. In this scenario, a significant challenge is that of legacy in-
tegration. Most of the systems that are evolving towards autonomous operation
already have existing subsystems that fulfill their specific roles. These subsystems
in turn may exhibit differing levels of autonomy (need for human supervision).
When architecting for overall system autonomy, it may not be possible to shuffle
around the contents of these subsystems in the overall logical architecture, or to
modify their software/hardware implementations.

As architectures evolve towards autonomy, their information management
aspect will gain greater importance. Traditionally, architectures have focused on
partitioning and minimizing the data flow across partitions. Autonomy may well
be viewed as a multitude of tasks cooperating closely by exchanging data. This
data needs to be filtered, abstracted and approximated as it flows around within
the system. Communication of high resolution information is architecturally ex-
pensive and so it may need to be meaningfully degraded as it flows away from
core components, as a tradeoff with better Quality of Service. It would fall on
the architecture to realize any such data-centric designs and to manage the in-
formation entropy within the system.

In section 3 we identified the following topics as currently representing bottle-
necks: world model, user interaction, complexity, feature interaction, redundancy
and safety. Several of these topics point towards the need for suitable reference

models, patterns and architectures, that could provide guidelines that address
many of these challenges. A definition of various functionalities and their inter-
faces related to intelligent autonomous systems, would facilitate the creation of
components, systems integration, prototypes, experiments, and may indeed, in
the end, pave way for a new market for various Al-related functionalities.
Solutions in the form of domain specific reference architectures would be one
way to guide the standardization and development of autonomous systems.

4.1 Safety aspects of autonomous systems

Current engineering techniques enable safety critical systems to be developed
and deployed, albeit at a very high cost. Moreover, the acceptance for accidents
caused by intelligent autonomous machines will most likely be much much lower
compared to accidents directly attributable to humans. There are thus strong
needs to consider system designs that can be formally verified and proved safe.
This drives the verification aspect of architectures. At the same time, as architec-
tures explode in complexity, post hoc verification becomes increasingly difficult.
Therefore, methods for ’correctness by construction’ will play a more significant
role. This includes, among others, model based system development.

In regard to the weaknesses of the current safety standards, one way forward
is to call for new hazard and risk analysis methods and the inclusion of detailed
guidelines on how to systematically motivate restrictions in the degree of freedom
of the autonomous system functionality with respect to different situations. The
possibility of this happening is unclear, however, since these standards mainly
capture and rank best practices in the industry. Manufacturing safe, intelligent
autonomous systems will require these techniques to be introduced in a step-
wise fashion, not through a slow process of being accepted by more and more
industrial players. A more feasible way forward might be to push for acceptance
via the large automotive consortia.

4.2 The need for multidisciplinary and cross-domain efforts

At the Stockholm workshop, the following shared challenges and gaps became
apparent.

— The workshop was attended by several industrial companies representing
developers of cars, trucks, heavy machinery, aircraft and military systems. It
was interesting to note that telecommunication companies were also present.
They expressed interest in architectures for autonomous systems - where they
perceived that challenges in developing such architectures were shared with
other domains. The take away was that the architecting challenges have much
in common. Networking across domains as a way of learning was perceived
highly beneficial by the participants.

— Development of intelligent autonomous systems will clearly require the use
of results from several academic disciplines. The academic disciplines are un-
fortunately largely fragmented, and disciplines such as Al, control, software,

sensing and signal processing rarely integrate across their specific theories,
frameworks, tools and prototypes. Successful and more optimal design of
intelligent autonomous systems will require a closer collaboration and in-
teractions between the disciplines. This insight is not new, and is for ex-
ample one of the key tenets of the Cyber-Physical Systems initiative in the
U.S.A[25]. Developing demonstrators and industrial collaboration provide
important means for integration as illustrated by the DARPA grand chal-
lenge and the GCDCJ[26] contest. Such collaboration can also help to reduce
the often perceived gap between industry and academia.

5 Acknowledgments

This research was conducted within the VINNOVA (Swedish Governmental
Agency for Innovation Systems) funded FUSE project. FUSE conducts research
on functional safety and evolvable architectures for autonomy. The autonomy
workshop from which several of this paper’s insights were drawn was conducted
under the aegis of the Innovative Center for Embedded Systems (ICES) at KTH,
Stockholm.

References

1. Takayama, L., Ju, W., Nass, C.: Beyond dirty, dangerous and dull: what everyday
people think robots should do. In: 3rd ACM/IEEE International Conference on
Human-Robot Interaction. (2008) 25-32

2. Albus, J.: Outline for a theory of intelligence. Systems, Man and Cybernetics,
IEEE Transactions 21(3) (1991) 473-509

3. ICES Workshop on Architectures for Autonomous Automotive
Systems. http://wuw.ices.kth.se/events.aspx?pid=3&evtKeyId=
ab27fb03b44a4dd79536cd4b048d6a7b (2014) [Online; accessed 14-February-
2014].

4. Broy, M.: Model-driven architecture-centric engineering of (embedded) software
intensive systems: modeling theories and architectural milestones. Innovations in
Systems and Software Engineering 3(1) (November 2006) 75-102

5. Broy, M.: Two Sides of Structuring Multi-Functional Software Systems: Function
Hierarchy and Component Architecture. 5th ACIS International Conference on
Software Engineering Research, Management & Applications (SERA 2007) (Au-
gust 2007) 3-12

6. Bruyninckx, H., Klotzbiicher, M., Hochgeschwender, N.; Kraetzschmar, G., Gher-
ardi, L., Brugali, D.: The BRICS component model. In: Proceedings of the 28th
Annual ACM Symposium on Applied Computing - SAC '13, New York, New York,
USA, ACM Press (2013) 1758

7. Di Natale, M., Sangiovanni-Vincentelli, A.: Moving From Federated to Integrated
Architectures in Automotive: The Role of Standards, Methods and Tools. Pro-
ceedings of the IEEE 98(4) (April 2010) 603-620

8. Watkins, C.B., Walter, R.: Transitioning from federated avionics architectures to
Integrated Modular Avionics. In: 2007 IEEE/ATAA 26th Digital Avionics Systems
Conference, IEEE (October 2007) 2.A.1-1-2.A.1-10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. :

22.

23.
24. :

25. :

26.

Pritchett, A.R.: Aviation automation: General perspectives and specific guidance
for the design of modes and alerts. Reviews of Human Factors and Ergonomics
5(1) (2009) 82-113

Fitts, P.M., Viteles, M.S., Barr, N.L., Brimhall, D.R., Finch, G., Gardner, E.,
Grether, W.F., Kellum, W.E., Stevens, S.S.: Human engineering for an effective
air navigation and traffic control system. Technical Report ADB815893, Ohio State
University Research Foundation (1951)

Bredereke, J., Lankenau, A.: A rigorous view of mode confusion. Computer Safety,
Reliability and Security 2434 (2002) 19-31

Rushby, J.: Modeling the Human in Human Factors Extended Abstract. In: Com-
puter Safety, Reliability and Security. Volume 2187. (2001) 86-91

The PARC/CAST Flight Deck Automation WG: Operational use of flight path
management systems. Technical report (2013)

Kopetz, H.: The Complexity Challenge in Embedded System Design. In: 2008
11th IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC), IEEE (May 2008) 3-12

Cameron, E., Griffeth, N., Lin, Y.J., Nilson, M., Schnure, W.; Velthuijsen, H.: A
feature-interaction benchmark for IN and beyond. IEEE Communications Maga-
zine 31(3) (March 1993) 64-69

Metzger, A.: Feature interactions in embedded control systems. Computer Net-
works 45(5) (August 2004) 625-644

Juarez Dominguez, A.L.: Feature Interaction Detection in the Automotive Do-
main. In: 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, IEEE (September 2008) 521-524

Hay, J., Atlee, J.: Composing features and resolving interactions. ACM SIGSOFT
Software Engineering Notes 25(6) (November 2000) 110-119

Tsang, S., Magill, E.: Learning to detect and avoid run-time feature interactions
in intelligent networks. IEEE Transactions on Software Engineering 24(10) (1998)
818-830

Velthuijsen, H.: Distributed artificial intelligence for runtime feature-interaction
resolution. Computer (1993)

IEC 61508:2010 Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems (2010)

Bieber, P., Boniol, F., Boyer, M., Noulard, E., Pagetti, C.: New Challenges for
Future Avionic Architectures. Aerospace Lab (4) (2012) 1-10

: ISO 26262:2011 Road vehicles — Functional safety (2011)

SS-EN ISO 13849-1:2008 Safety of machinery — Safety-related parts of control
systems — Part 1: General principles for design (ISO 13849-1:2006) (2008)
Designing a digital future: Federally funded research and devel-
opment in networking and information technology. Report to the pres-
ident and Congress. http://www.whitehouse.gov/sites/default/files/
microsites/ostp/pcast-nitrd-report-2010.pdf (2010) [Online report; accessed
14-February-2014].

Ploeg, J., Shladover, S., Nijmeijer, H., van de Wouw, N.: Introduction to the Special
Issue on the 2011 Grand Cooperative Driving Challenge. IEEE Transactions on
Intelligent Transportation Systems 13(3) (September 2012) 989-993

