s

Ly,
ZFKTHS

VETENSKAP
38 OCH KONST 9%

N

ROYAL INSTITUTE
OF TECHNOLOGY

Architecting Autonomous Automotive Systems

With an emphasis on cooperative driving

SAGAR BEHERE

Licentiate Thesis
Stockholm, Sweden, 2013

TRITA MMK 2013:06 KTH School of Industrial

ISSN 1400-1179 Engineering and Management
ISRN KTH/MMK/R-13/06-SE SE-100 44 Stockholm
ISBN 978-91-7501-712-9 Sweden

Akademisk avhandling som med tillstand av Kungl Tekniska hogskolan fram-
lagges till offentlig granskning for avlidggande av teknologie licentiatexamen
i maskinkonstruktion torsdagen den 25 april 2013 klockan 15.00 i seminar-
ierum B319, Institutionen for Maskinkonstruktion, Kungl Tekniska hogskolan,
Brinellvigen 83, Stockholm.

© Sagar Behere, april 2013

Tryck: Universitetsservice US AB

Abstract

The increasing usage of electronics and software in a modern auto-
mobile enables realization of many advanced features. One such fea-
ture is autonomous driving. Autonomous driving means that a human
driver’s intervention is not required to drive the automobile; rather, the
automobile is capable of driving itself. Achieving automobile autonomy
requires research in several areas, one of which is the area of automo-
tive electrical/electronics (E/E) architectures. These architectures deal
with the design of the computer hardware and software present inside
various subsystems of the vehicle, with particular attention to their in-
teraction and modularization. The aim of this thesis is to investigate
how automotive E/E architectures should be designed so that 1) it is
possible to realize autonomous features and 2) a smooth transition can
be made from existing E/E architectures, which have no explicit support
for autonomy, to future E/E architectures that are explicitly designed
for autonomy.

The thesis begins its investigation by considering the specific prob-
lem of creating autonomous behavior under cooperative driving condi-
tions. Cooperative driving conditions are those where continuous wire-
less communication exists between a vehicle and its surroundings, which
consist of the local road infrastructure as well as the other vehicles in
the vicinity. In this work, we define an original reference architecture
for cooperative driving. The reference architecture demonstrates how
a subsystem with specific autonomy features can be plugged into an
existing E/E architecture, in order to realize autonomous driving capa-
bilities. Two salient features of the reference architecture are that it is
minimally invasive and that it does not dictate specific implementation
technologies. The reference architecture has been instantiated on two
separate occasions and is the main contribution of this thesis.

Another contribution of this thesis is a novel approach to the design
of general, autonomous, embedded systems architectures. The approach
introduces an artificial consciousness within the architecture, that un-
derstands the overall purpose of the system and also how the different
existing subsystems should work together in order to meet that purpose.
This approach can enable progressive autonomy in existing embedded
systems architectures, over successive design iterations.

ii

Sammanfattning

Den 6kande anvéandningen av elektronik och mjukvara i fordon kan
forverkliga manga avancerade funktioner. En sadan funktion &r autonom
koérning. Autonom korning innebér att en férare inte lingre behovs for
att styra fordonet; fordonet kor sig sjalv. Att uppna autonomi i fordon
kraver forskning inom flera omraden déar ett omrade ar arkitektur in-
om el/elektronik (E/E). Dessa arkitekturer behandlar utformningen av
hardvara och mjukvara och specifikt systemets modularisering samt del-
systemens interaktion. Syftet med denna avhandling &r att undersocka
hur E/E arkitekturer inom fordon bor utformas s att 1) det ar mojligt
att realisera autonoma funktioner och 2) en mjuk 6vergang kan goras
frén befintliga E/E arkitekturer, som inte har ndgot uttryckligt stod
for autonomi, till framtida E/E arkitekturer som ar explicit avsedda for
detta.

Denna avhandling inleds genom att betrakta det specifika problemet
med att skapa autonomt beteende for kooperativa koérférhallanden. Ko-
operativa korférhallanden ar sddana déar tradlés kommunikation ar kon-
tinuerligt etablerad mellan ett fordon och dess omgivning, som bestar
av det lokala vignitet samt andra fordon i ndrheten. I detta arbete
definierar vi en ny referensarkitektur for kooperativ koérning. Referen-
sarkitekturen visar hur ett delsystem med specifik autonomifunktion-
alitet kan kopplas till en befintlig E/E arkitektur for att forverkliga
autonom korning. Tva framtradande drag i referensarkitekturen &ar att
den &r “minimalt stérande” och att den inte begransar vilken teknolo-
gi som kan anvdndas vid implementeringen. Referensarkitekturen har
realiserats vid tva tillfdllen och &r det framsta bidraget i denna avhan-
dling.

Ett annat bidrag i denna avhandling &r en ny metod for utformning
av generalla och/eller autonoma inbyggda systemarkitekturer. Denna
metod infér ett konstgjort medvetande inom arkitekturen som forstar
det 6vergripande syftet med systemet, och hur de olika befintliga delsys-
temen bor arbeta tillsammans for att mota detta. Detta tillvigagangssatt
mojliggdr successivt inférande av autonomi i befintliga systemarkitek-
turer.

Terminology

ADL Architecture Description Language - A computer language used to cre-
ate a description of a system architecture.

Architecture A system’s blueprint as reflected in the key building blocks
of the system, their composition, their interplay, the resulting extra-
functional properties, and so on. More formally, it is defined within a
systems engineering context by 1S042010:2011 as, "..fundamental con-
cepts or properties of a system in its environment, embodied in its ele-
ments, relationships, and in the principles of its design and evolution."[(1]

Reference architecture A predefined architectural pattern, or set of pat-
terns, possibly partially or completely instantiated, designed, and proven
for use in particular business and technical contexts, together with sup-
porting artifacts to enable their use.[68]

Automotive E/E Architecture The architecture of an automobile’s Elec-
trical /Electronic systems.

Autonomous machines Machines which can perform their task(s) with min-
imal human intervention.

Consciousness The quality or state of being aware, especially of something
within oneself.

Cooperative driving Driving in a situation where vehicles and road infras-
tructure in the vicinity of a vehicle continuously exchange wireless in-
formation with the vehicle, and where this information is then used to
control the motion of the vehicle.

ECU Electronic Control Unit

iii

iv

Intelligence The ability of a system to act appropriately in an uncertain
environment, where appropriate action is that which increases the prob-
ability of success, and success is the achievement of behavioral subgoals
that support the system’s ultimate goal.[23]

Artificial Intelligence The science and engineering of making intelligent
machines, especially intelligent computer programs.|74]

Middleware A software layer that lies between the operating system and
applications of a computer system.

System A regularly interacting or interdependent group of items forming a
unified whole. In our context, a system is embodied as a programmable
machine, together with its included program. When referring to a sys-
tem, we are concerned with both the hardware and the software of the
machine, together with all the interfaces in the system, including those
between the hardware and the software, between the system and its user
and between the system and its environment.

Embedded system A computer system that is part of a larger system and
performs some of the requirements of that system. [12]

Complex system A system that can be analyzed into many components
having relatively many relations among them, so that the behavior of
some components may depend on the behavior of others, and the be-
havior of the system cannot simply be derived from the summation of
individual components’ behavior.

Acknowledgements

Whom should you blame for this thesis? Traditionally, names are changed to
protect the innocent but nobody associated with this work can claim innocence
anymore. Here then, are the names of some incredible people who encouraged
and supported my work.

Martin Torngren has been my primary supervisor and go-to guy for all
sorts of problems. I often enter his office feeling slightly worried and con-
fused, but walk away relieved and clearheaded. DelJiu Chen always has a
fresh perspective on things; I turn to him whenever I feel stagnated for words
and ideas. Jad El-khoury is single-handedly responsible for bringing this the-
sis to closure. His careful scrutiny of the drafts and insightful feedback has
significantly raised the quality of the text. Moreover, working with Jad is
really nice, because it is the equivalent of being handed a proper map with a
"You are here’ marker drawn on it.

Bjorn Liljeqvist and I had a brief but stimulating association, during which
many autonomy related ideas came to the forefront. Working with him gave
me the opportunity to experience a very real synergy of minds and the plentiful
productivity that results from it.

The GCDC 2011 team, which included Jonas Martensson, Dennis Sund-
man and Henrik Pettersson, provided a fun and interesting working environ-
ment. We had a lot of fun driving around in our big, big trucks :)

Monsieur Frédéric Loiret and I exchange opinions on Life, the Universe
and Everything. His unwavering enthusiasm and positive energy have seen
me through some tough days. Other friends and colleagues at the department
of Machine Design have provided a pleasant working atmosphere.

Most of this work has been possible due to direct or indirect support from
the ITM school at KTH, Volvo Car Corporation and Scania CV AB. Their
role is gratefully acknowledged.

Finally, I would like to acknowledge the role played by my parents, who
do not always understand, but always accept and support.

Contents

Terminology

Acknowledgments

Contents

Appended publications

1

Introduction

1.1 The big picture
1.2 Thesisoutline L Lo
1.3 Architecting autonomous embedded systems
1.4 Research scope and question .
1.5 Research methodology

State of the Art

2.1 Automotive

2.1.1 Discussion

2.2 Intelligent control and robotics architectures
2.2.1 Intelligent control . .
2.2.2 Cognitive architectures
2.2.3 Real-time control architectures

2.2.4 Discussion

2.3 General embedded systems and software development

2.3.1 Middleware and software development
2.4 Automobiles vs robots: architectural considerations
2.5 Positioning of this thesis work

Contributions

vi

iii

vi

ix

13
14
18
18
19
20
22
23
24
25
27
32

35

CONTENTS vii

3.1 A reference architecture for cooperative driving 35
3.2 An approach to embedded systems autonomy 37
4 Discussion 41
4.1 Reflection on work done 41
4.2 An approach to incremental system autonomy 43
5 Future work and Conclusion 49
5.1 Future work 49
5.2 Conclusion 50
Bibliography 53

Publication A

Publication B

Publication C

Publication D

Appended publications

¢ Publication A
A reference architecture for cooperative driving
Authors: Behere, Sagar ; Térngren, Martin ; Chen DelJiu
Provisionally accepted for publication. Journal of Systems Architecture,
Special edition on Embedded Software Design

Sagar wrote the paper. Martin and Chen provided feedback.

e Publication B
The development of a cooperative heavy-duty vehicle for the GCDC
2011: Team Scoop
Authors: Martensson, J.; Behere Sagar, et. al.
Intelligent Transportation Systems, IEEE Transactions on , vol.13, no.3,
pp-1033-1049, Sept. 2012 doi: 10.1109/TITS.2012.2204876

Sagar wrote the section IT on Architecture. Other authors wrote sections
about their individual work related to control, communications etc.

¢ Publication C
Scoop Technical Report: Year 2011
Author: Sagar Behere
Technical report, 2011, Dept, of Machine Design
KTH TRITA - MMK2012:12, ISSN 1400-1179, ISRN/KTH/MMK/R-
12/12-SE

Sagar wrote the entire report.

ix

CONTENTS

e Publication D
Towards Autonomous Architectures: An Automotive perspective
Authors: Behere, Sagar (KTH) ; Liljeqvist, Bjorn (EIS by Semcon)
Technical report, Oct. 2012, Dept. of Machine Design
KTH TRITA - MMK 2012:10, ISSN 1400-1179, ISRN/KTH/MMK/R-
12/10-SE

Sagar wrote most of the text. Sagar and Bjorn together brainstormed
to generate the ideas in the paper.

Chapter 1

Introduction

In the beginning the Universe
was created. This has made a lot
of people very angry and has
been widely regarded as a bad
move.

Douglas Adams, The Hitchhiker’s
Guide to the Galaxy

1.1 The big picture

We live in a world where practically all the machines that surround us contain
tiny computers. The cars we drive, the airplanes we fly in, the phones we use,
the ovens we cook our food in.. all contain computers. These computers
control the functioning of the machine into which they are embedded. These
computers are called Embedded Systems in engineering lexicon. More formally,
an embedded (computer) system is defined by the IEEE as "..a computer
system that is part of a larger system and performs some of the requirements
of that system."[12]

There is an increasing desire to make machines autonomous. Autonomous
means that the machine is able to perform its task without direct human in-
tervention. This is beneficial for a number of reasons. Autonomous machines
have the potential to increase safety and efficiency of operations. They can
operate in evironments which are hazardous to humans, or where humans sim-
ply cannot be physically present to operate the machines. Sometimes machine

2 CHAPTER 1. INTRODUCTION

autonomy is desired because it enables humans to be more lazy! Regardless of
the reasons that justify machine autonomy, the means to achieve it is through
the use of computers. This is because computers make it convenient to perform
calculations and take decisions based on those calculations. In the context of
machines, computers are utilized in the form of embedded systems. Therefore,
we can introduce the term Autonomous Embedded Systems and use it to refer
to those embedded systems that enable machine autonomy.

An embedded system in a machine may consist of multiple subsystems
and each subsystem can in turn consist of multiple sub-subsytems and so on,
as illustrated in Figure 1.1. Similarly, multiple systems can come together
to form a ’system of systems’. Thus, a system can be decomposed into its

[

Autonomous.

]

Autonomous.

Figure 1.1: A system is composed of subsystems, some of which could be
autonomous

constituent subsystems, or systems can be composed to form greater (or com-
posite) systems. Both composition and decomposition are standard practices
in the design of embedded systems. Now, if we wish to design an autonomous
embedded system, it is reasonable to assume that we should examine the con-
stituent subsystems, some of which might be autonomous. Next, we will have
ways to compose the various autonomous and non-autonomous subsystems to
create a system which is autonomous and without conflicts among the subsys-
tems. This rather obvious process is sometimes overlooked in practice. Usu-

1.1. THE BIG PICTURE 3

ally, it is overlooked when the system is not initially designed for autonomy,
but attempts are subsequently made to introduce autonomy via incremen-
tal system modifications. In such a scenario, it is commonly observed that
individual subsystems are made autonomous without much regard for the au-
tonomy status of the overall system. Furthermore, each individual subsystem
may be designed to differing levels of autonomy'. Then, when the different
autonomous subsystems are composed to create a system, conflicts may arise
between the individual subsystems, since they were not designed according to
an overall autonomy plan. These conflicts are often resolved by ad-hoc meth-
ods, ugly hacks or local fixes, which in turn contribute to the rising complexity
of the system. It becomes difficult to attain whole system autonomy and to
assure essential charactersistics like system safety.

The automotive industry provides a good example of the above practice.
Initially, the automobile was completely mechanical. Gradually, embedded
systems were introduced into various subsystems (Figure 1.2). Examples are

* Electro-

+ Advanced MMI mechanical

+ ALC valves
+ AFS - Tire pressure
+ Night Vision sensors
« Navigation - TLC + 42 Volt
system + ACC Stop & Go system
+ CD Changer - Force Feedback + Collision
- Bus systems Pedal Avoidance
- ACC: Active - Lane Departure + Steer-by-wire
Cruise Control Warning « Brake-by-wire
< « Electronic - Airbags « Int. Energy « Throttle-by-wire
: E:,e:]"om Ceing. - DSC: Dynamic Management - Black box
Injection + Electronic Air Stability Control « Local Hazard - Bluetooth
Conditioning . Warning
« Electronic « ASC: Anti Sli + Adaptive 2 - On-board
Ignition é %]"' P Gearing + CO? Reduction multimedia
< Chsek ontrol - Roll Stabilization - Telematics < Wireless
Control * ABS- Anthlock + Xenon Lighti + Online Servi connectivit
ontro Braking System enon Lighting nline Services nn y
« Cruise . Seat Heatin: + RDS/TMG « Integrated Safety * Unified chassis
Control Contol 9 - Emergency Call Systems controller
+ Central Adtoristic . Servotronics . Fue.l .CeII/.LH.z + MOST ring
Locking Mirror " ic Shock . - Hcel
L Dimming Absorber Control « Software... * LED headlight

Figure 1.2: Growth of automotive embedded systems (source [35])

electronic Engine Management System, Anti-lock brakes, power windows etc.
Then came the desire for autonomy. The first subsystem to go autonomous
was the transmission. The so-called automatic transmission requires little
human intervention during operation, and is therefore autonomous according
to our definition. Next came the cruise control and traction control features,

IThe subsystems may require differing extents of attention from the human operator.

4 CHAPTER 1. INTRODUCTION

which are enabled by embedded systems, and which incorporate a certain
level of autonomy? within them. Notice that at this point, the automobile
has three subsystems with varying levels of autonomy, but the automobile as
a whole is still not fully autonomous. And already at this point, conflicts start
appearing. What if the cruise control system wishes to accelerate the vehicle
while simultaneously the traction control system wishes to apply the brakes?
Such undesirable interaction between features is termed feature interaction in
the engineering lexicon[63, 78]. As the complexity and autonomy of individual
subsystems rises, the automotive industry is finding it increasingly difficult
and costly to deal with such feature interactions and design safe and reliable
vehicles.

There are technical reasons why individual subsystems can reach increas-
ing levels of autonomy, before the system as a whole can be autonomous.
These are the subsystems which have simple and well-defined roles (e.g.: the
transmission) and are consequently easier to automate. In fact, autonomy of
subsystems is a key enabler for overall embedded system autonomy. However,
there is a clear need for new ways to construct and compose autonomous em-
bedded systems. To begin with, there needs to be an overall "autonomy plan"
that dictates their design. An overall autonomy plan is that which considers
the autonomous behaviour required from the system as a whole. Such a plan
needs to be present because it helps to specify and streamline the expected be-
havior of the individual subsystems. The individual subsystems then need to
conform to the overall plan. But immediately at this point, practical problems
present themselves. Specifically, many subsystems have legacies of established
and proven designs. The challenge then becomes to move from existing de-
signs towards those that are based on new theoretical principles of autonomy.
Two outstanding issues thus present themselves

1. We need new designs based on new principles of autonomy

2. We have to deal with the inertia of existing designs, for reasons of com-
positionality and risk management

It is indeed required to create new designs based on new principles, but they
should be created in such a way that they can subsume existing designs.
Complementary efforts are also needed to lay out the path or means via which
existing designs can then be evolved towards the new designs. The aim of
this thesis is to investigate ways of creating new designs and to provide an

2the features are self-operating, although they may require occasional human interven-
tion.

1.2. THESIS OUTLINE)

evolutionary path for existing designs. The aim will be fulfilled via embedded
system architectures. Before moving on to a discussion of architecture, the
next section provides an outline of the overall thesis.

1.2 Thesis outline

The organization of this thesis is depicted in Figure 1.3.

Chl: Introduction

Big picture
Architecting
autonomous
embedded systems
Scope
Research questions

hesis

Ch2: SoTA

Automotive

Robotics

Intelligent Control

Embedded systems

Automobiles vs robots:
Architectural
considerations

Ch3: Contribution

Ch4: Discussion

Coop. driving
reference architecture
A pattern for
autonomy

Reflection on
design and
validation

of

reference architecture
An approach

to building
autonomous

Chb: Future work
& Conclusion

Future work

Conclusion

embedded
Research
methodology

systems

Figure 1.3: Thesis structure

o Chapter 1 (this chapter) begins with an introduction of the overall topic
under discussion. The big picture that constitutes the motivation for
this research is first presented. Section 1.3 then introduces the role
of the architecture in tackling the overall problem. The discussion is
narrowed down in section 1.4, by applying a series of constraints, which
eventually results in the specific research question and a hypothesis.
Finally, section 1.5 describes the research methodology followed during
this thesis work.

¢ Chapter 2 presents related work, which is organized into three categories:
Automotive, Robotics and Intelligent Control, and Embedded Systems.
These three categories cover the bulk of the research that contributes
to the theory of embedded systems autonomy as applied to automobile
architecture. The chapter also presents a discussion of the architectural
considerations that differentiate the automotive and robotics domains.

6 CHAPTER 1. INTRODUCTION

e Chapter 3 summarizes the principal contributions made by this thesis
work. It does so by providing an overview of the contents of the ap-
pended publications.

o Chapter 4 presents a reflection of the work done, as well as an approach
to building autonomous embedded systems.

o Finally, chapter 5 presents the direction that future work will take and
concludes the thesis by re-visiting the research questions put forth in
chapter 1 and the contributions made by the thesis.

1.3 Architecting autonomous embedded systems

While introducing the big picture in section 1.1, it was noted that there needs
to be an overall autonomy plan that dictates the design of autonomous embed-
ded systems. The autonomy plan can be expressed in the form of the system’s
architecture. The term architecture represents the system’s blueprint and it
is reflected in the key building blocks of the system, their composition, their
interplay, the resulting extra-functional properties, and so on. More formally,
it is defined within a systems engineering context by ISO42010:2011 as, "..fun-
damental concepts or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and evolution."[61].
So we now pose the question, "How should we architect autonomous embedded
systems?"

In order to decide how we should architect autonomous embedded sys-
tems, it is useful to understand the impact of autonomy on embedded sys-
tems design. The concept of autonomy introduces a paradigm?® shift in the
architecture of embedded systems. The shift occurs because autonomy af-
fects practically every aspect of the architecture. It affects desired behavior,
safety, error diagnosis and recovery, predictability as well as interaction with
human users and other devices. Precisely due to their far reaching impact,
autonomy-related considerations should be incorporated into the architecture

3The term paradigm is defined in the dictionary as, "a pattern or model, an exemplar".
The science historian, Thomas Kuhn, sharpened the meaning of the term, when he defined
a scientific paradigm as, "universally recognized scientific achievements that, for a time,
provide model problems and solutions for a community of researchers"[69]. Kuhn saw the
sciences as going through alternating periods of normal science, when an existing model of
reality dominates a protracted period of puzzle-solving, and revolution, when the model of
reality itself undergoes sudden drastic change. This is relevant because considerations of
autonomy introduces a change in both, the "model problem" and "model solutions" for the
community of researchers in embedded systems architecture.

1.3. ARCHITECTING AUTONOMOUS EMBEDDED SYSTEMS 7

from the start; not as an afterthought. This is especially true for large scale,
distributed embedded systems. Consider, for example, the embedded system
in a modern car. It is a distributed system, consisting of multiple Electronic
Control Units (ECUs) that are connected to a set of common communication
buses. As the system evolves, new features are added either as new software
functions in the existing ECUs, or as new ECUs which are connected to the
communication bus. Sooner or later, the bus capacity is exceeded whereupon
more buses are introduced into the system. As the complexity grows, the sys-
tem is partitioned. For example, the ECUs are gathered into groups such that
the inter-group communication requirements are minimized. The underlying
paradigm here is, "Create new functionality and stick it onto the bus." In this
rather ad-hoc manner, automotive embedded systems have grown large and
unwieldy. There is no single entity in the modern automobile that is aware
of all the different subsystems and how they are supposed to work, in order
to deliver the expected behavior. Rather, it is a case of multiple ECUs inde-
pendently doing their own thing (sometimes with restricted communication
with other ECUs). The lack of a single entity that is aware of the the entire
system state makes it tricky to perform correct arbitration between the sub-
systems, respond to unanticipated conditions and generally assure coherent
system behavior.

This approach of multiple, isolated, communicating units is good from a
viewpoint of system growth and managing complexity via partitioning. In-
deed, it may even be the natural way for such systems to have developed.
However, it becomes very difficult to guarantee the satisfaction of overall au-
tonomy requirements for a system that has been developed in such a way,
especially when the development has taken place over a period of time. The
isolation makes it difficult for a subsystem to have a wider context for its
operation and to consider or predict the system level effects of local decisions.
By making comparisons to human decision making mechanisms, it is possible
to theorize that the presence of a system-aware "Ego" (i.e. a conceptual en-
tity which is aware of the system’s purpose and how the subsystems should
interact to fulfill it) may help in the development of system autonomy. We
will explore the concept of the system "Ego" in sections 4.2 and 5.1. For now,
it is enough to observe that although separation of subsystems, partitioning
and communication are necessary they may not be sufficient for architecting
autonomous embedded systems. The gap could be filled by an additional ar-
chitectural specification that dictates how system level autonomy should be
achieved. Such an additional specification could demand fundamental design
changes to existing subsystems in order to form an elegant, coherent and au-

8 CHAPTER 1. INTRODUCTION

tonomous whole. However, fundamental design changes may not always be
possible due to legacy and other concerns. Therefore, the task before the re-
searcher in autonomous embedded systems is to create principled, top down
autonomous architectures for the overall system, while keeping in mind that
the implementations of these top down designed architectures need to be re-
alized via incremental evolution of existing bottom up designs. Naturally, an
evolutionary path also needs to be provided to go from the existing to the
newly created autonomous architectures.

1.4 Research scope and question
The overall problems we can formulate based on the discussion so far are

1. What are the requirements, principles and patterns for architecting au-
tonomous embedded systems which fulfill desired functional and extra-
functional goals?

2. What are idealized, architectures for distributed, embedded systems that
are expressly designed for autonomy?

3. What are the engineering and technical ways to evolve existing embed-
ded systems architectures towards those that are expressly designed for
autonomy, while minimizing impact on established, legacy designs?

These questions are rather broad in scope. The scope needs to be more tightly
focused, in order to yield manageable research questions for a licentiate thesis
work that can yield tangible benefits. Such focusing, or narrowing of the scope
is an established research practice and is referred to as the hourglass notion of
research[105], as illustrated in Figure 1.4a. For this thesis work, the scope is
successively focused by a sequence of decisions (the delimitations), which are
illustrated in Figure 1.4b and summarized as follows

1. We will consider industrial* embedded systems only. These are
embedded systems produced in a factory, with the goal of being, or be-
ing incorporated into, commercial products. This focusing is done to
emphasize the difference from esoteric systems in the field of academic
artificial intelligence or research robotics. Architectures for industrial
embedded systems should ideally take into account matters related to

4Note our definition of ’industrial’ in the forthcoming sentence! We do not intend the
definition to connote 'heavy industry’ (iron & steel, mines etc.).

1.4. RESEARCH SCOPE AND QUESTION 9

General autonomy

Industrial embedded
Begin with broad questions

Automotive, Coop. driving

narrow down, focus in
Build Prototype
operationalize

Evaluate prototype

analyze data
: New hypotheses

reach conclusions L
New directions

generalize back to questions

Develop, test, validate

(a) Hourglass notion of research (b) Hourglass applied to this thesis

Figure 1.4: Research scope

product legacy, development methodologies (vendors, consultants, in-
dustrial practices,..), applicable standards, product lifecycle and legis-
lation. There may also be requirements related to warranties, support
and mass production.

2. We will consider automotive embedded systems. These are good
representative examples of embedded systems that are distributed and
safety critical, and whose development is affected by legislative require-
ments and standards. Automotive embedded systems are growing rapidly;
there is a strong interest in their autonomy and the field provides rich
opportunities for case studies and application scenarios.

3. We will consider vehicle autonomy in cooperative driving sce-
narios. The motion control subsystems of the vehicle® will be collec-

5We do not consider subsystems like infotainment, climate control etc. which are not

10 CHAPTER 1. INTRODUCTION

tively treated as an autonomous machine, designed to have an under-
standing of a variety of internal and external conditions and to drive it-
self without human intervention. Vehicle autonomy will only be present
in cooperative driving scenarios. In such scenarios, there exists continu-
ous wireless communication between all vehicles in a geographical area
of interest. The road infrastructure also continuously communicates in-
formation about traffic lights, speed limits etc. The reason for focusing
on autonomy in cooperative driving scenarios is that in these scenarios,
a lot of organized information is available over the wireless. This makes
the environment more structured, and consequently, autonomy is easier
to achieve. In contrast, autonomy is more difficult to achieve in the type
of environment that humans drive around in today, because organized
information is not as readily available.

Filtering the overall problems (listed at the start of this section) through the
delimitations above, we arrive at the primary research question investigated
by this licentiate thesis

What is a good way to introduce autonomy in a vehicle for the
purpose of cooperative driving?

In this context, a 'good way’ is that which

1. requires minimum changes to the embedded systems in the existing ve-
hicle

2. can be implemented using established industrial tools and development
methodologies

3. is generic enough to serve as a reference solution for different types of
vehicles

We make the hypothesis that a working answer to the above research ques-
tion can be provided in the form of a reference architecture for autonomous,
cooperative driving. Validation of the hypothesis can be performed by cre-
ating and instantiating such a reference architecture, which would also yield
two further benefits. The first benefit, of course, would be the availability

directly responsible for motion of the vehicle.

1.5. RESEARCH METHODOLOGY 11

of a tested and proven reference architecture for cooperative driving. The
architecture itself would be a novel engineering result. The second benefit
would be the emergence of promising theories and directions for architecting
autonomous embedded systems. These theories may then be developed and
validated during future research.

1.5 Research methodology

Engineering design is used as the methodology for this research. The process
of engineering design is argued to be a research methodology in [413]. The
argument is presented as follows®: "Research may be succintly defined as an
activity which develops new knowledge. Engineering research is concerned with
the development of a suitable solution to a need. The process of designing a
novel prototype for addressing a need produces significant new knowledge of
how that specific need can be addressed. Therefore, design is a method of cre-
ating new knowledge, which makes it a methodology for research.” This thesis
work attempted to design a novel engineering prototype, with the understand-
ing that a correctly functioning prototype provides proof by construction that
the solution developed is valid and effective. This methodology is sometimes
referred to as case study based research. A more detailed discussion of en-
gineering design as a research methodolgy, together with the key differences
between scientific and engineering research can be found in[13, 12]. The over-
all methodology of this work is illustrated in Figure 1.5. The Figure shows
that the availability of a theory for building autonomous systems leads to
the design and development of one or more prototypes. The insights which
are consequently obtained are then used to refine the original theory and this
triggers a new cycle of prototype(s) creation. This thesis work resulted in
the creation of two prototypes and the gain of consequent insights. Thus, it
represents one cycle (the inner- or left- most) of Figure 1.5. It is expected
that the insights obtained will lead to the creation of more prototypes as the
research progresses.

Given the research question posed in section 1.4, a prototype system for
autonomous, cooperative driving was designed [publications B and C]. The
design process commenced with a review of state of the art and practice re-
lated to vehicle control, wireless communication as well as system architectures
(hardware and software) for road vehicles and autonomous robotic systems.
Subsequently and over several iterations, a system design was created which

6The quoted sentences that follow have been picked from various parts of the text in[43],
where they do not appear in the same sequence as presented here.

12 CHAPTER 1. INTRODUCTION

Licentiate cfforts ' Future rescarch

T

\\cvf\"“/“w“g,_.- - —
P — -
— — :
Theories for Prototype(s) Prototype(s) Prototype(s)
building autonomous D D : D D D D D
systems :

[s :
ey, D— L _—
i —_— — i
\f\ i /

— E—

time

Figure 1.5: Research methodology

was deemed to provide a sufficient solution to the problem. A system proto-
type was developed, which was installed in an existing, commerical truck, the
R730 model, from Scania CV AB. The system was then tested and validated
during the Grand Cooperative Driving Challenge (GCDC) 2011 7. The expe-
riences with the prototype resulted in a more generalized theoretical solution
for autonomy and cooperative driving. This solution is in the form of a ref-
erence architecture [publication A], which is the primary contribution of this
thesis. The reference architecture was instantiated and validated a second
time on a different Scania truck model, during the CoAct-2012 Cooperative
Driving Demonstration in Géteborg. The experience with the reference archi-
tecture and its instantiations also uncovered some promising hypotheses and a
research direction [publication D], which are a secondary contribution of this
thesis and will form the base for further research. The research direction is
further discussed in section 4.2.

“The GCDC was an international event for demonstrating cooperative, autonomous
driving on public roads, which took place in the Netherlands in May 2011.

Chapter 2

State of the Art

"When we try to pick out
anything by itself, we find it
hitched to everything else in the
universe."

John Muir

Archictectures for automobile autonomy are influenced by primarily three
domains: 1) Automotive 2) Robotics and intelligent control and 3) General
embedded systems. Automobile autonomy (chequered section in Figure 2.1)
lies at the intersection of these three domains and this chapter therefore pro-
vides an overview of related work in all three domains. Each domain is covered
in a separate section of this chapter. Those sections are structured as follows:
First, a listing of some relevant references is made. The listing consists of
introductions, overviews, surveys and states of the art. The content of these
references is not elaborated much; the intention is to provide a compact set
of references to background material for the interested reader. A selected set
of research contributions is then described to a greater degree. Each section
ends with a discussion where the author’s opinions about some of the pre-
sented research are expressed. These opinions typically include an analysis of
the research and potential connections to automotive architecture.

After covering the related work in the three domains mentioned above,
this chapter presents a discussion of some aspects which affect architectures
of vehicles that are intended for series production. It provides a cautionary
note by highlighting the fact that architectures and technologies arising from
research in domains like robotics cannot be blindly applied to automotive

13

14 CHAPTER 2. STATE OF THE ART

|
'i

G

General
Embedded systems

Figure 2.1: Automobile autonomy lies at the intersection of three research
areas

autonomy. Finally, we show where this thesis work is positioned, in relation
to the three domains.

2.1 Automotive

The growth of electronics in vehicle systems has created new engineering op-
portunities and challenges. In this section, we take a look at topics related
to electronics, embedded systems, software and E/E architecture, all from an
automotive specific viewpoint. We also provide references to core technologies
(control systems design, wireless communication etc.) that are instrumental
in enabling autonomous driving and some projects that have attempted to
create autonomous driving functionality in some form or another.

An introductory overview of the expanding electronic systems in the auto-
motive domain is given in [73], where the authors focus on in-vehicle networks
and electrical power demands. A quick and general overview of software in
automotive systems is provided in [32], where the differences between auto-
motive and other types of software are highlighted, together with software
processes and standardization attempts in the automotive industry. A thor-
ough coverage of architecting and modeling automotive embedded systems is
provided in [72]. A roadmap of software engineering for automotive systems
is presented in [91], which also covers the salient features of the automotive

2.1. AUTOMOTIVE 15

domain, the consequences of each salient feature and research challenges for
automotive software engineering.

A comprehensive survey of literature related to autonomous and cooper-
ative driving is presented in section 1.3 of appended publication A. This in-
cludes research in the areas of automatic control, wireless communication and
smart transport infrastructures, which covers the key knowledge and technolo-
gies that enable cooperative, autonomous driving. It also includes references
to and results of large on-going or recently completed projects which aim to
integrate the individual research areas and create technology demonstrators.

Some key issues affecting the development of automotive electrical and
electronic (E/E) architectures are identified in [108]. An important issue that
is uncovered is that architectural decisions are largely influenced by history
and this is reflected in technology choices as well as the organization. The
authors point out that existing automotive architectures were fundamentally
designed in the mid 1990s and that there is a need to design architectures
that are driven more by current needs than by legacy designs and decisions.
Another highlighted issue is the lack of a clear, long term architectural strategy
within an organization. A third issue underscores the fact that an established
process for architecture development is missing. Some more issues are also
pointed out that have an indirect bearing on architectures and the architecting
process, but whose origins lie in the business processes and software tools
domains.

Some characteristics and re-engineering challenges of automotive software
are identified in [99]. The characteristics cover hard real-time requirements,
reliability and safety requirements, limited resources, heterogenity of domain
knowledge and the existence of short development cycles under time pres-
sure. The authors also point out that programming paradigms in automotive
software development are changing from using "C code in an assembly-like
manner' to the use of visual programming tools with autogenerated code
via a complex toolchain. They emphasize the importance of time-triggered
computation models in the automotive world and suggest that techniques for
understanding blackboard architectures[54] would be very useful to the au-
tomotive domain, since communication, control and dataflow in automotive
subsystems is usually realized by writing/reading shared memory areas (which
is akin to blackboard architecture).

An excellent introduction to the engineering of automotive software is pro-
vided in [30]. The authors begin by pointing out that more than 80% of the
innovation in modern cars is realized via software. Then a characterization
of automotive software engineering is provided by taking into consideration

16 CHAPTER 2. STATE OF THE ART

the idiosyncrasies of the automotive domain. This includes the market, in-
terplay of OEMs and suppliers, heterogenity of software involved and the
multi-disciplinary nature of the field. The non-technical features of automo-
tive software which are highlighted include division of labor, long product
lifetimes despite short innovation cycles and the presence of a large number
of product variants. From a more technical perspective, the authors make the
claim that the goal of automotive software engineering should be to differen-
tiate between the various software domains in a vehicle (infotainment, driving
functionality etc.) and offer the proper reliability, safety and security for both
the software and its development processes. After a further description of the
complexity of technical architectures in vehicles, the authors then describe the
trends and challenges that occur precisely due to the identified characteris-
tics. The identified future trends in functionality include crash prevention and
safety, advanced energy management and advanced driver assistance systems.
Another trend is the presence of integrated, comprehensive data models. This
implies the presence of a vehicle-wide, distributed database, instead of the cur-
rent situation where each ECU keeps local copies of data and the local copies
within different ECUs may contain conflicting data about the same informa-
tion. A sophisticated structural view of modeling automotive architecture is
then described that encompasses different levels of abstraction ranging from
user-level views down to the hardware architecture. The trends are wrapped
up with a discussion of model based development, model based middleware,
tool support and improvements to reliability and safety.

The state of practice in automotive architectures is to isolate functional-
ity in independent ECUs, that are connected to a common communication
bus. This is termed federated architecture in [38], wherein the authors argue
that the problems of increasing functional complexity and cost are pushing
automotive architectures towards a new paradigm, the so-called integrated
architecture. An integrated architecture is one where a single ECU can sup-
port multiple functions, and a single function can be distributed over multiple
ECUs. The integrated architecture concept is inspired by the Integrated Mod-
ular Avionics(IMA)[109] architecture in the avionics domain, where a similar
transition from federated architectures has been initiated[110].

The design and development of component based embedded systems for
automotive applications is covered in [84]. The authors have divided this
paper into three categories

o Challenges to the adoption of model based technologies: The identi-
fied challenges include shortcomings of most modern tools for model-
based design. For example, lack of separation between functional and

2.1. AUTOMOTIVE 17

architectural models, insufficient support for specification of timing con-
straints and attributes, and a lack of support for the analysis of schedul-
ing related delays. The authors also describe issues in model-to-model
transformation and translation, giving an example of a model made
in Simulink, UML and AUTOSAR where the execution semantics are
found to differ for each case.

e A review of recent advances in component based technologies: The re-
view focuses on timing predictability, timing isolation and the role played
by standards like CAN, FlexRAY and OSEK for priority based schedul-

ing.

¢ Results of a methodology for architecture exploration that is based on
the concept of virtual platforms and timing analysis. The concept basi-
cally involves the optimal mapping of a system model onto the candidate
execution platform instances. The optimality is based on goodness-of-
fit to certain constraints and the paper focus on timing constraints and
metrics.

Further exposition of the virtual platform concept from this paper is provided
in [94], which includes a discussion of communication, distributed systems,
composability and compositionality, especially in the context of AUTOSAR.

AUTOSAR (AUTomotive Open System ARchitecture) [18, 16] is a world-
wide development partnership of car manufacturers, suppliers and other com-
panies from the electronics, semiconductor and software industry. It not only
provides a technical middleware/platform for automotive ECU development,
but also includes a development methodology for the same. AUTOSAR is
rapidly becoming the de-facto implementation method in the automotive in-
dustry.

Beyond AUTOSAR, engineering support for automotive embedded sys-
tems comes in the form of integrated architecture description languages (ADLs)[75],
specific to the automotive domain[36]. In particular, EAST-ADL2[33], is an
ADL for automotive safety and architecture modeling that supports safety
requirements, faults/failures, hazards and safety constraints in the context of
the ISO/DIS 26262 reference safety lifecycle.

In [40], the authors describe an experience of introducing a reference archi-
tecture in the development of automotive electronic systems. Their findings
emphasize the importance of centralized development processes and the need
for a unifying vehicle architectural platform, rather than having individual
architectures for each vehicle project.

18 CHAPTER 2. STATE OF THE ART

The DySCAS project[93, 26, 34, 89] looked at issues, architecture and
middleware for dynamically self-reconfigurable embedded systems in the au-
tomotive domain. It developed a reconfigurable, adaptable, component based
middleware for distributed automotive architectures. The project also pro-
duced a formalism based on timed automata for modeling resource manage-
ment, including quality of service. Finally, a hierarchical reference architecture
framework was presented, which uses the publish-subscribe message passing
communication model.

2.1.1 Discussion

The issues highlighted above from [108] make a significant point: Compa-
nies must have a long term architectural strategy, which is driven by current
needs rather than legacy. Legacy is also one of the drivers of the bottom up
style of development processes prevalent in the automotive industry today.
A bottom up process leads to the development of locally optimized solutions
that necessitate late refactoring of the architecture. The future of automotive
E/E architectures will be driven by progress in three main areas: Principled
top down design, implementation technologies and supporting tools and tech-
niques for model based development. It is worth noting that a principled
top down architecture is unlikely to receive a clean, new implementation and
therefore ways must be found to migrate legacy architectures towards the new
ones. Keeping this fact in mind will probably have an influence on how the
top down architecture is designed.

AUTOSAR as an implementation platform has enjoyed a certain degree of
success, but it still needs more work in order to cover the needs of upcoming
architectures and their description. In particular, as mentioned in [84], the
AUTOSAR metamodel lacks clear and unambiguous communication and syn-
chronization semantics and a complete timing model. This adversely affects
the design time verification of component properties and prevents prediction
of behavior and properties of composed components. The AUTOSAR meta-
model is fairly mature in its static/structural part, but needs more support
for behavioral descriptions. These will enable better component reuse and
composition.

2.2 Intelligent control and robotics architectures

Architectures in the areas of intelligent autonomy and robotics can be broadly
split into two categories[51, 90]. The first category is that of cognitive archi-

2.2. INTELLIGENT CONTROL AND ROBOTICS ARCHITECTURES 19

tectures, which explore issues of general intelligence. Their primary concern is
the reproduction of human-like characteristics of information processing, rea-
soning and decision making. The second category of architectures is designed
explicitly for the control of physical, embedded systems that need to operate
reliably and robustly in an uncertain environment. The primary concern of
this second category of architectures is with topics of real-time control, sen-
sor fusion, error recovery etc. The two categories have a degree of overlap,
which is mostly in their underlying theory of hierarchical systems. The over-
lap occurs because both categories use hierarchies to represent information
at different abstraction levels. For example, some architectures for real-time
control, like RCS[28], are organized as hierarchical graphs in which nodes at
the higher levels have broader scope, longer time constants and less detail[21].
The theory of hierarchical control is well-explained in [76]. It presents some
of the fundamental concepts for intelligent control, covers the abstraction of
models at different control levels and presents a theory for coordination of
different subsystems that are under the command of an intelligent controller.
The concept of intelligent control has also evolved in the domain of classical
control systems. In this domain, intelligence is added as a hierarchical layer
on top of a traditional control loop. The application of the control loop is not
necessarily for robotics.

This section is organized into subsections for intelligent control, cognitive
architectures and real-time control architectures. In the last subsection, some
characteristics of these architectures and possible relationships to automotive
architectures are discussed.

2.2.1 Intelligent control

A sketch of the theory behind intelligent control, together with some of its
specific traits in outlined in [80]. A general examination of architectures for
intelligent control systems is made in [79].

An excellent literature overview of intelligent autonomous control is pre-
sented in [27]. In addition to the overview, a brief history of the development
of control systems is presented to motivate the necessity of autonomous con-
trollers. Next, desirable functions, characteristics and behaviors of intelligent
control systems are outlined. For example, it is stated that the control archi-
tecture should be functionally hierarchical. Highest authority should lie with
the machine’s operator and lower level subsystems should require a clearance
from higher authority levels before executing their actions. At the same time,
lowest level subsystems that monitor and reconfigure for failures should be ca-
pable of acting autonomously to enhance system safety. The paper then intro-

20 CHAPTER 2. STATE OF THE ART

duces an three layer autonomous control architecture for space vehicles. The
authors also identify a number of fundamental characteristics of autonomous
control theory. For example, the successive delegation of duties from higher
to lower hierarchical levels results in an increasing number of distinct tasks
down the hierarchy. The higher hierarchical levels are concerned with longer
time horizons than lower levels and incorporate models with higher levels of
abstraction. The paper is concluded with an approach to a quantitative and
systematic modeling and analysis of autonomous controllers. The approach
includes both differential equations as well as symbolic formalisms like finite
automata.

Some definitions and structures of intelligent control systems are presented
in [97]. It is postulated that the presence of high intelligence lowers the de-
mand on precision and vice versa, and a multi-level structure representing a
hierarchy in the distribution of intelligence is also presented. An integrated
theory for intelligent machines is presented in [95] by the same author, where
control performance of a feedback control system is expressed analogously to
entropy in thermodynamics. This facilitates the treatment of all levels of an
intelligent, hierarchical control system by attempting to minimize the sum of
entropies at individual levels. An example of applying the theory of intelligent
control to robotic manipulator is given in [96].

An outline of a general theory of intelligence is given in [23]. This is
one of the seminal works in the field and evolved into the engineering of the
mind[20] that intended to facilitate the development of scientific models of
the mind. More practically, it resulted in the creation of a reference model
architecture for intelligent systems design[24], called Real-time Control Sys-
tem (RCS)[28]. RCS evolved through at least four versions, and RCS-3 was
adapted for the NASA/NBS Standard Reference Model Telerobot Contros
System Architecture (NASREM)[22], which was developed for applications in
space telerobotics.

2.2.2 Cognitive architectures

Surveys of artifical cognitive systems and cognitive architectures can be found
in [106, 39].

The Guardian architecture[53] is a blackboard architecture[54] for con-
trolling embedded agents. A blackboard architecture consists of a common
knowledge pool, which is shared among and updated by a diverse group of
agents. Initially, the problem specification is written onto the "blackboard'
and then agents can iteratively post partial solutions, until eventually the
whole solution is obtained. The process is similar to a group of specialists

2.2. INTELLIGENT CONTROL AND ROBOTICS ARCHITECTURES 21

clustered around a physical blackboard in order to solve a problem. The
approach enables generating a whole solution incrementally, despite the pos-
sibility that no individual agent has sufficient knowledge to solve the problem.
The Guardian architecture builds upon the blackboard concept and consists of
a perception/action component, which is controlled by a cognitive component.
One of the architectural highlights is the ability of the cognitive component
to reason about the current situation and migrate decision making to the
relatively faster perception/action component.

The SOAR architecture[70] enables a system to switch between delibera-
tive and reactive modes of reasoning. While originally a pure cognitive archi-
tecture, it has been extended with a perceptual motor interface that allows
some interaction with the physical world. The Adaptive Control of Thought-
Rational (ACT-R) [25] is a cognitive architecture that attempts to explain
and offer insights into how all the components of mind work together to pro-
duce coherent cognition. It is more of a psychological model, which could
nevertheless find interesting applications in future embedded systems design.
Cypress[37] is a domain independent framework for creating agents that can
accept goals and synthesize and execute complex plans while staying reactive
to changes in their world. It is implemented as a loosely coupled integration
of some established Al tools, together with a new, common representation for
sharing knowledge between them. CLARION[104] is a model for developing
a bottom-up approach to skill learning, where procedural knowledge develops
first, and declarative knowledge develops later. This is different from most
existing models that employ a top down approach to learning of high level

skills. The Global Workspace Architecture[l01] is a cognitive architecture
that incorporates an approximation of consicousness as well as emotion and
imagination. The CoSy architecture schema[51] enables embodied robots to

perform human-like tasks of object search, object manipulation, locomotion
and spatial reasoning. It contains mechanisms for the focus of attention and
for dynamically assigning task priorities. However, although several physical
demonstrators have been built using instantiations of the schema, the instan-
tiations have not included support for hard real-time control. ICARUSI71]
is an architecture that has been strongly influenced by results from cognitive
psychology and aims to reproduce qualitative characteristics of human behav-
ior. It consists of specific processes and memories that the processes interact
with. The most basic activity of the architecture is the so-called 'conceptual
inference’ which is run on every execution cycle. Conceptual inference updates
long term beliefs about the state of the world, based on lists of perceived ob-
jects and their relations. The architecture also includes modules for problem

22 CHAPTER 2. STATE OF THE ART

solving and associated learning processes.

2.2.3 Real-time control architectures

Among the architectures designed expressly for controlling physical robot sys-
tems, probably the most famous one that departs from the traditional sense-
calculate-actuate model is the so called Subsumption architecture[29]. This
architecture does not decompose the system into functional subsystems like
perception, modeling, planning, motor control etc. Rather, it advocates the
development of narrowly focused subsystems that fulfil specific tasks of the
system, like ’explore surroundings’, ’identify objects’ etc. Each subsystem is
then optimized for the particular task it performs. Any conflicts between the
tasks are resolved by an arbitration mechanism. There is no architectural
support for resource management, planning or abstractions.

3T[90] is a three tier architecture that coordinates planning activities with
real-time behavior for dealing with dynamic robot environments. The tiers
consist of a dynamically reprogrammable set of reactive skills coordinated by
a skill manager, a sequencer that (de)activates sets of skills and a deliberative
planner that reasons in depth about goals, resources and timing constraints.
Distribution of taks aspects across the tiers depends on four possible task di-
mensions: time taken, bandwidth needs, task requirements and modifiability.
For example, the skills tier has a cycle time in the order of milliseconds, while
the planning tier operates at tens of seconds. So if something must run in a
tight loop (e.g. obstacle avoidance) then it should be a skill. 3T has been
implemented on several mobile and manipulator robots and its authors claim
that it offers a unifying paradigm for control of intelligent systems. To quote
the authors, "The architecture allows a robot, for example, to plan a series
of activities at various locations, move among the locations carrying out the
activities, and simultaneously avoid danger, maintain nominal resource levels,
and accept guidance from a human supervisor." Superficially at least, these
goals seem aligned to those of a future autonomous car.

The Task Control Architecture (TCA)[102] is a framework for combining
deliberative and reactive behaviors to control autonomous robots. A robot
built using TCA consists of task-specific modules and a central control mod-
ule. The task modules perform all robot-dependent information processing,
while the central module routes messages and maintains task control infor-
mation. Each task module uses some TCA specific mechanisms for specifying
information about the decomposition of tasks, how tasks should be monitored
and how to react to exceptional situations. The TCA has been used in over

2.2. INTELLIGENT CONTROL AND ROBOTICS ARCHITECTURES 23

half a dozen mobile robot systems, including six-legged robots and mobile
manipulators.

ATLANTIS[17] is another architecture for control of autonomous robots
in dynamic and uncertain environments. ATLANTIS also combines a reactive
control mechanism with a tarditional planning system. Its shows how a tradi-
tional symbolic planner can be smoothly integrated into an embedded system
for pursuing multiple goals in real time.

2.2.4 Discussion

An autonomous automotive architecture needs to blend concepts of both cog-
nitive as real-time control architectures. The cognitive concepts enable per-
ception and reasoning of sensed data, as well as planning, prioritization and
sequencing of tasks. The real-time control concepts are needed for tight control
over actuators and processing within time-bound and safety critical subsys-
tems.

The split between cognition and action in the Guardian architecture[53]
could be applied to automotive architectures, where the existing automotive
architecture could be considered as a distributed perception/action component
and a cognitive component would then have to be introduced for overall system
level reasoning and control. The blackboard concept is already utilized, in
some form or the other, in existing automotive subsystems. This is because
any global memory can be considerd to be a ’blackboard’ and global memories
are a fairly common practice in embedded systems programming. However,
the use of the blackboard by different agents as a way to collaboratively solve
problems is probably a novel idea for programmers of automotive subsystems.

The subsumption architecture[29] has some remarkable similarities to ex-
isting automotive architectures, in the sense that the automotive architectures
consist of individual subsystems (ECUs), which are optimized for their spe-
cific task. As with the subsumption architecture, there is no global resource
planning and management. Neither is the vehicle as a whole partitioned into
subsystems like vehicle motion planning, environment perception, etc. Such
capabilities, if present, are isolated into individual ECUs, where they operate
within the limited context of that ECU. A problem with the subsumption
architecture, which is also heavily manifested in automotive architectures, is
that as the number of tasks/behaviors grow and there is increased interaction
between them, it becomes increasingly difficult to find adequate arbitration
schemes, or to even predict behavior in general.

One of the biggest differences between existing automotive architectures
and and the robot architectures discussed in this section, is the existence of

24 CHAPTER 2. STATE OF THE ART

concurrent processing in architectural components. Such processing is inher-
ent in automotive architectures by virtue of construction. It is a given that
multiple subsystems can be active in parallel, handling sensor inputs and coor-
dinating actions among different subsystems. However, as pointed out in [51],
most of the architectures discussed above support only one thread of control
at a time. This is true for SOAR, ACT-R, CLARION, the subsumption archi-
tecture, 3T and ICARUS. An exception is the Global Workspace Architecture
which actually revolves around having concurrently active processes.

Many of the robot architectures necessarily involve concepts which, if ap-
plied to the automotive industry, are frowned upon if not forbidden outright,
by existing automotive safety and certification considerations. This is espe-
cially true for those concepts that introduce elements of uncertainty in the
behavior of the system. For example, the dynamic selection of task priorities
based on the current operational context, desired behavioral goals and sensed
data implies that the runtime behavior may not be predictable in advance.
This would make automotive architects uncomfortable because in the automo-
tive world, determinism has high value and the architects would rather prefer
a strict, static scheduling where all execution characteristics are rigorously
determined and investigated in advance. As automobiles become more au-
tonomous, designers will have to make more robust designs that are tolerant
to a certain extent of non-determinisic behavior.

2.3 General embedded systems and software
development

Architectures for automotive E/E subsystems and robotics are both special-
izations of the broader category of embedded systems. Therefore, it makes
sense to look at some relevant research and results in general embedded sys-
tems. This section focuses on a small number of specific results relevant to au-
tonomy, composition and complexity management of embedded subsystems.
Additionally, a subsection presents some middleware, software development
frameworks and libraries that can aid the developer of embedded autonomous
systems.

The autonomic nervous system of the human body has inspired an initia-
tive for self-management of distributed computing resources. This initiative,
started by IBM in 2001, is termed Autonomic Computing[61]. Tt aims to tackle
the problem of increasing complexity, specifically the complexity of managing,
distributed computer systems. In an autonomic system, the human operator’s
role is to define the policies, rules and guidelines for the self-management pro-

2.3. GENERAL EMBEDDED SYSTEMS AND SOFTWARE
DEVELOPMENT 25

cess. The autonomic computing concept is relevant because the E/E architec-
ture of an autonomous vehicle is essentially a complex, distributed computer
system and the role of the architect is to define the policies, rules and guide-
lines for self-management of the architecture. Therefore, the principles and
results of autonomic computing could find application in autonomous auto-
motive architectures. An autonomic system consists of blocks for sensing,
knowing the purpose of the system and the required know how for operating
itself. The actual operation is performed by the Logic, which can realize the
system’s purpose. An overview of autonomic computing is given in [36]. A
survey of autonomic computing, including motivation, concepts and seminal
research in presented in [59], where the authors conclude that all distributed
system architectures will soon contain reflective and adaptive elements of au-
tonomic computing. The key features of autonomic systems, their relation to
general Al and a generic architecture for autonomic computing are discussed
in [65,]. At a more practical level, there exists a guide to IBM’s auto-
nomic computing toolkit[62], that exemplifies how an application or system
component can participate in an autonomic computing environment. IBM has
also defined a deployment model[3] that identifies five levels of deployment for
autonomic systems, where level 1 is the existing way where management is
basically manual and level 5 represents the ultimate goal of autonomic sys-
tems.

The concepts of composition and decomposition mentioned in early in sec-
tion 1.1 are well documented and explored in the GENESYS project[60, 19].
The project aimed to develop a cross-domain reference architecture for embed-
ded systems that meets the requirements and constraints related to compos-
ability, networking and security, robustness, diagnosis and maintenance, inte-
grated resource management, evolvability and self-organization. It produced
an analysis of architectural requirements and a description of a cross-domain
architectural style that offer good insights into the nature of the problem and
characteristics of relevant solutions.

Complexity challenges in embedded systems design are described in [66].
The author argues that the complexity challenge needs to be addressed by
making the system models simple and understandable, by introducing appro-
priate levels of abstraction. Also presented is a set of design patterns for
supporting component based design of embedded systems.

2.3.1 Middleware and software development

A comparative evaluation of robotic software integration systems is made
in [100]. Surveys of available middleware and development environments

26 CHAPTER 2. STATE OF THE ART

for robotics are made in [31, 41, 83, 67]. In particular, Player/Stage[18, 7]
and OROCOS]31, 16] have enjoyed wide adoption by academic robotic re-
searchers'. Player provides a software server for network transparent robot
control, while Stage is a lightweight robot simulator. OROCOS is more ori-
ented towards hard real-time control and software component based architec-
tures. In OROCOS, software components can be defined by starting off from
a template, and the entire system configuration can be specified via an XML
file that describes the instances of each component that should be created, as
well as the execution semantics of the components and the inter-component
data flows. The Robot Operating System (ROS)[92, 8] is a relatively recent,
open source, 'meta-operating system’ for robots that is gaining popularity
in the robotics community. ROS is not a real-time framework, although it
can be integrated with hard real-time frameworks like OROCOS[15]. YARP
(Yet Another Robot Platform)[77, 44, 9] is a communication middleware, or
"plumbing", for robotic systems. It supports many forms of communication
(tep, udp, multicast, local, MPI, mjpg-over-http, XML/RPC, tcpros, ...) and
in the words of its creators, "If data is the bloodstream of your robot, then
YARP is the circulatory system." BALT & CAST[52] is a middleware for cog-
nitive robotics that is closely related to the CoSy architectural schemal51]
mentioned in section 2.2. CLARATYy[107, 85] is a two layered architecture
and software framework for robot autonomy. It consists of a Functional Layer
that provides abstractions for various subsystems and a Decision Layer that
can do high level reasoning about global resources and mission constraints.
An example of the composition of complex robot applications by using data
flow integration is given in [103].
The Object Management Group’s Data Distribution Service (OMG DDS)|6,
] is a publish/subscribe communication specification for Quality of Service
(QoS) based, real time data exchange between publishers and subscribers.
Some architectures for distributed, real time embedded systems that use DDS,
and evaluations of the implementation of the architectures are presented in
[112]. The use of data centric publish/subscribe for building highly depend-
able, adaptive, real time system architectures is presented in [15]. Best prac-
tices for data centric programming and using DDS to integrate real world
systems are described in [38]. A more general set of communication pat-
terns for composability of components is described in [98]. ZeroMQ[17, 10]
is a broker-less, intelligent transport layer that supports a very wide variety
of communication patterns including publish/subscribe, N-to-N via fanout,
pipelining and request/response over in-process, TCP and multicast trans-

Las evidenced from citations, referrals and mailing list conversations.

2.4. AUTOMOBILES VS ROBOTS: ARCHITECTURAL
CONSIDERATIONS 27

ports. It has bindings for 30+ programming languages and supports a variety
of UNIX and Windows operating systems.

The Internet Communications Engine (ICE)[11, 55] is an object-oriented
middleware for building distributed systems. It offers remote procedure calls,
grid computing and publish/subscribe mechanisms for a wide variety of pro-
gramming languages and operating systems. It comes with a variant for re-
source constrained, embedded systems, called Ice-E[1]. CORBAJ2] has been
the traditional middleware for implemented distributed software services and
has its share of detractors[56] and supporters[1]. A comparison of three mid-
dleware platforms and a discussion of when performance and scalability mat-
ters (and when it does not) is presented in [57].

2.4 Automobiles vs robots: architectural considerations

Autonomous automobiles could be considered as mobile robots moving around
in an unstructured environment. Therefore, it is natural to expect some knowl-
edge transfer from the robotics to the automotive domain. However, even
though many algorithms (related to control, sensing, data fusion, perception,
information processing etc.) migrate between robotics and automobile de-
sign, a similar migration of architectures is yet to be seen. To understand
why this is the case, it is helpful to compare commerical automobiles with
robot prototypes. Prima facie, such a comparison appears to be unfair or
even incommensurable i.e. apples-vs-oranges. This is actually not the case
and the comparison is necessary because the theory and methods needed to
create future commercial autonomous automobiles (like cognition, artificial
intelligence(AI), behavior generation etc.) have traditionally been developed
by robotics researchers and implemented in robot prototypes; prototypes, not
commercial robots. Very few of the works related to Al and cognition, refer-
enced in the robotics state of the art in section 2.2, have been commercially
implemented? and moreover any new research that will impact the design of
autonomous automobiles is likely to be tested out first on robot prototypes.
Therefore, it is towards robot prototypes that we need to look for inspiration,
even if our goal is to ultimately produce commercial automobiles. However,
since our goal is commercial automobiles, we must also be aware of the differ-
ences between commercial automobiles and robot prototypes, especially those
differences that make it difficult to adapt architectures from one domain to
the other. Some of those differences are simply the differences between pro-

2Most commercial robots are mindless automatons in the sense that they repetitively
perform pre-programmed tasks.

28 CHAPTER 2. STATE OF THE ART

totyping and commercialization, and they have nothing to do with either
automobiles or robots. That is fine and so be it. The important thing is to
know that a comparison needs to be made, the reason it needs to be made and
the differences to be aware of. The root cause of the differences is secondary.
In this section, we first look at the differences, followed by how the differences
affect the architecture. Later in the section, we’ll see an example of how an
automobile architecture could look like, if designed from a mobile robotics
perspective.

We can briefly summarize some important differences between commercial
automobiles and robot prototypes as follows

1. Users: An automobile is expected to be operated everyday by users with
little technical understanding of the principles underlying its construc-
tion. Simplicity of the operational interface is important and it helps if
the interface follows familiar and established idioms. On the other hand,
robot prototypes are typically operated by people who know far more
about the robot’s construction, than the average person knows about
the car he or she is driving. Given the ubiquity of automobiles and their
potential safety hazards as well as the fact that all automobiles have
essentially the same user interface, construction and purpose, it is nec-
essary that automobiles are uniformly simple to operate. Contrariwise,
robots have widely varying construction and human interfaces and it is
okay if they are complex to operate. The architecture of a machine is
significantly affected by requirements of hiding operational complexity
from the user and providing simple and convenient means to operate
the machine. In particular, automotive architectures have been influ-
enced by the pertinent standards, development processes and legislation
evolved by the automotive industry.

2. Legacy: A modern automobile is an evolution of a prior product ver-
sion and similarly, the automobile of the future will be based on today’s
product. In a scenario like this, sweeping architectural changes based
on novel (and unproven) concepts are difficult to introduce. In con-
trast, the burden of legacy is significantly lighter (often non-existent)
when designing a novel robot prototype. It is more acceptable to ignore
legacy when developing a robot protype than when developing the next
generation automobile platform.

3. Development processes: Subsystems of commercial automobiles are
often designed and developed by different vendors. These subsystems
are then integrated into the product via traditional and standardized

2.4. AUTOMOBILES VS ROBOTS: ARCHITECTURAL
CONSIDERATIONS 29

communication protocols and patterns. Thus, the development model
is highly distributed. Introducing major architectural changes involves
propagating the changes throughout the distributed development pro-
cesses. This can be commercially unfeasible. Robot prototypes are not
influenced by the inertia of the development and supply chain. Intro-
ducing an architectural change in a robot prototype does not require
the same financial and contractual considerations that an automobile
manufacturer would have to make.

4. Safety, standards and legislation: The ubiquity of automobiles to-
gether with the complexity of their design make them potential safety
hazards, both for the general public as well as for the occupants. There-
fore, stringent legislation is in place, and many development standards
exist that affect the design and implementation of the automobile. The
novelty of bleeding edge tools and technologies may make it difficult to
get the required safety certifications and this factor must be considered
during the architecting process.

A consequence of the above points is that the architectures and technical im-
plementations of automobile embedded systems are markedly conservative, at
least in comparison with robot system prototypes. For example, the automo-
tive industry has created a software development standard for the C program-
ming language, MISRA CJ[13, 14], that should be used for the programming
of safety critical subsystems. The standard has many valid points, but it also
results in a reduced language subset that trades off (prohibits) some of the
more advanced language features for a purported decrease in programming re-
lated errors. For example, MISRA C prohibits any form of dynamic memory
allocation (malloc(), free() etc.), usage of errno, setimp(), longjmp() and also
requires that no use shall be made of any signal handling facilities provided by
<signal.h> or functions from <stdio.h> and <time.h>. The benefits of such
"safer language subsets" and especially some of the restrictions dictated by
MISRA-C are at times questionable[19, 50, 5]. (In particular, [50] compares
the two most recent versions of MISRA C and provides a devastating critique
that concludes with, "MISRA C 200/ ... has not solved the most fundamental
problem of MISRA C 1998, viz. that its unadulterated use as a compliance
document is likely to lead to more faults and not less ... In its present form,
there is a danger that the only people to benefit from the MISRA C 2004 update
will be tool vendors. ") Conservativeness is also found in automotive implemen-
tation frameworks like AUTOSAR, which does not provide native support for
communication patterns like publish-subscribe, the formation/deletion of or

30 CHAPTER 2. STATE OF THE ART

changes to data flow connections at run time, or the transfer of opaque, weakly
typed data objects between software components. Regardless of opinions on
conservativeness, the fact is that certain architectures and architectural pat-
terns from the robotics domain can be rendered un-implementable due to the
technologies and restrictions favored by the automotive industry in practice.
For example, it would be difficult to adopt an architecture where dataflow
ports between components are created, re-routed or destroyed dynamically
during runtime, or where the types and sizes of data structures exchanged be-
tween components cannot be statically specified in advance. Such facilities are
quite common in architectures for autonomy, artificial intelligence, cognition
and robotics and are sometimes central to their designs.

Another important distinction between automotive and robotics architec-
tures is that automotive architectures lack system level, central software pro-
cesses that orchestrate the functioning of the vehicle as a whole. Rather, the
emphasis is on subsystems; automotive embedded systems mostly focus on
physical subsystems in the vehicle e.g. engine, brakes, transmission etc. The
architecture comprises of embedded subsystems that cater to or are responsi-
ble for these physical subsystems. Thus, there exists the Engine Management
ECU, the Anti-lock Brake System ECU, the Automatic Transmission ECU
and so on. These ECUs and their place in the logical hierarchy of existing
automotive architectures are shown in Figure 2.2. The Figure illustrates that
the ECUs are present at the lowermost layer of the logical hierarchy. It also
shows that there are some functions, like traction control, park assist etc. that
may utilize more than one ECU and these are logically placed above the layer
that contains the individual ECUs. Functions like these are a ’thin layer’ on
top of the ECUs; their place in the logical hierarchy is a result of necessity
(they have to be where they are, because they can not be any lower down
i.e. isolated within one of the existing ECUs). As shown in Figure 2.2, there
exists no comprehensive logic on top of this layer that drives the ECUs in
accordance with some system level goals. Rather, each ECU ’does its own
thing’, perhaps with some limited interaction with other ECUs.

The bottom up approach to automotive architecture that is evident so far
must be complemented with top down thinking of systems, which is missing.
In contrast, architectures for (mobile) robots often have a strong top-down
aspect and are designed around system level notions of functionality, like
motion, navigation, task planning etc.

If we think of a car as a mobile robot, how would its architecture look
like? One example is shown in Figure 2.3 ; which primarily shows the logical
elements involved in vehicle motion. There are two main elements involved:

2.4. AUTOMOBILES VS ROBOTS: ARCHITECTURAL

CONSIDERATIONS

Higher level logic

MISSING

Traction control, park assist, ...

‘ Engine H Brakes HTransmission

Data flow

Data flow

Figure 2.2: Logical hierarchy for an automobile

Accelerator/Brake
edal
interpreter

Applications

Active safety
driver

R

g
&,
o,

Cooperative driving

[S
| / /

Environment

Motion
Vector
Execution

Platform support|

Energy + Intelligence

Figure 2.3: Logical architecture for a robotic car

31

one for generating a motion vector and another for making the vehicle move

along the generated motion vector.

The motion vector generator, referred

to as the "Active safety driver’ is the element that at all times provides the
motion vector to be realized. This element can, in the simplest case, use
inputs from the accelerator, brake and steering wheel to generate the basic
motion vector setpoint. This basic setpoint can then be modified based on the
current driving situation, subsystem states, operational constraints, physical
laws etc. It is referred to as ’Active Safety Driver’ because it can override or

32 CHAPTER 2. STATE OF THE ART

saturate inputs which are determined to be unsafe for the current operating
situation. For advanced functionality, arbitration can be performed between
the basic pedal and steering inputs, and inputs from a navigation/planning
subsystem and/or a cooperative driving subsystem. The motion vector which
is eventually generated after considering all necessary inputs and factors is
then handed over to the subsystem that can move the vehicle along that
vector. This subsystem internally utilizes the physical subsystems like engine,
brakes and the transmission. At all time, data is constantly exchanged with
an element representing the internal and external environment. Further, it
is even possible to think of motion vector execution as a ’platform service’
and the motion vector generation as an application running on top of this
platform. Comparison of Figure 2.3 to Figure 2.2, shows that the Engine,
Brake and Transmission ECUs (i.e. the lowermost layer in the Figure 2.2) are
abstracted in the Motion Vector Execution component of Figure 2.3, which
precisely emphasizes the higher level logic that was deemed missing in Figure
2.2.

As automobiles become more autonomous, it is likely that more and more
system level logic needs to be incorporated and the functionality of existing
ECUs will be shuffled around to fit a top down driven, system oriented archi-
tecture. However, considerations of legacy make it difficult to begin with clean
implementations of such a top down architecture. Therefore, there need to
be ways to migrate the implementations of existing, bottom up architectures
towards a top down architecture that is conceptually ’designed-from-scratch’.

2.5 Positioning of this thesis work

Research results in cognition, artificial intelligence, machine learning, task
planning and prioritaization, sensing and perception are needed when design-
ing intelligent, autonomous automobiles. These research results have evolved
to a greater extent in the research robotics domain than in the automotive
domain. Therefore, it makes sense to study what the robotics domain has to
offer and to adapt its results to the automotive domain.

This thesis sits in between the domains of automotive E/E architecture
and cognitive, autonomous and intelligent robotics. It attempts to adapt the
principles and architectures of intelligent autonomy, as developed in robotics,
to the automotive domain. In particular, the research direction attempts to
introduce a cognitive component in existing automotive architectures. Such
a cognitive component would acknowledge the presence of other existing sub-
systems in the architecture and utilize them to generate the desired system

2.5. POSITIONING OF THIS THESIS WORK 33

behavior. Progressive increase in the capabilities of the cognitive component
would be one way to achieve progressive vehicle autonomy. Our approach
would also involve a refactoring of existing automotive architecture such that
it better works with the cognitive component. In this thesis work, the foun-
dation for such an approach has been laid.

Chapter 3

Contributions

"Talk is cheap. Show me the
code."

Linus Torvalds

The primary contribution of this thesis (publications A, B and C) is a
reference architecture for autonomous, cooperative driving. A secondary con-
tribution (publication D) is a pattern for thinking about autonomous systems
architecture, which also presents a fresh perspective on complexity related
problems of existing automotive architectures. This pattern was inspired by
the work done on the reference architecture.

3.1 A reference architecture for cooperative driving

Can a vehicle drive by itself in a scenario where vehicles and infrastructure in
the vicinity are continuously broadcasting information about themselves? Can
such a feature be added to an existing vehicle architecture? Can it be added in
a way that requires no significant changes to the existing vehicle subsystems?
Moreover, is there a general pattern or template for doing it, which can be
applied to diverse practical cases? The answer to all these questions is, "Yes"
and the primary contribution of this thesis is to describe exactly how all this
can be achieved. In doing so, it answers the research question posed in section
1.4, What is a good way to introduce autonomy in a vehicle for the purpose
of cooperative driving? This section describes the artifacts resulting from the
work. A discussion of how these artifacts answer the research question and
validate our hypothesis is presented later in section 4.1.

35

36 CHAPTER 3. CONTRIBUTIONS

Supervisor Model data suppliers _Model data consumers_______

Model data processors

Super Sensors| H
H Data Map
‘: Fusion # Matching,

Wireless
Broadcast
Vehicle

Gateway

— T
pertioce
vireless Semantic
Reception Analyser >
Vehicle
Gateway

D Architectural element

O Generic data processor
O Plugin

——> Data flow

Local sensors.

To supervisor

i

Other
Information
sources

Figure 3.1: A reference architecture for cooperative driving

Publication A presents a reference architecture (Figure 3.1) for coop-
erative driving. The reference architecture describes a (sub)system which
can be "plugged into" an existing vehicle architecture. When activated, the
(sub)system takes over from the human driver and drives the vehicle. As
shown in Figure 3.1, the architecture centers around a "World Model’, which
is a database of all current (and possibly some past) information in the sys-
tem. This information could be sensor data, fused sensor information, state
information, control setpoints etc. There are 'Model data suppliers’, which
are entities that supply information to the World Model and 'Model data
consumers’ which consume tha data in the World model. Other architectural
elements involve a Supervisor and a means to Control the vehicle motion.

In publication A, we first investigate the technical considerations involved
in the design of such a system. Next, the services that are required within
the vehicle to achieve cooperative driving functionality are identified. These
services include positioning, world modeling, wireless communication, super-
vision and some others. Based on the technical considerations and services,
we then define an architecture that can provide the required services. The key
architectural elements are described, together with their inter-relationships.
Guidelines are provided for the instantiation of the reference architecture. The
paper also describes a validation of the proposed reference architecture via a

3.2. AN APPROACH TO EMBEDDED SYSTEMS AUTONOMY 37

specific instantiation and describe the experiences with the instantiation. This
particular instantiation was validated during the Grand Cooperative Driving
Challenge (GCDC) 2011 at Helmond, the Netherlands. The GCDC consisted
of vehicle platooning on public roads. Platooning is a specific scenario in
cooperative driving that involves vehicles driving autonomously, one behind
another, as though in a road train. Finally, the reference architecture is com-
pared to state of the art architectures for autonomous systems, and also to the
AUTOSAR standard. It is concluded that the architecture agrees well with
established principles of autonomous systems architecture and that it can be
implemented with AUTOSAR concepts and infrastructure.

Publication B describes in greater detail the specific instantiation of the
reference architecture that was used during the GCDC 2011. This publication
covers some of the communication and control algorithm aspects that are
outside the scope of the reference architecture, but which were needed for
that specific instantiation. Finally, publication C describes all the technical
implementation details of the instantiated architecture, which are missing
from publication B.

3.2 An approach to embedded systems autonomy

How should one think about autonomy in the context of existing general
embedded systems architectures? What are the main challenges being faced
by these architectures in their migration towards autonomy? How can existing
embedded systems be moved closer to autonomy, without disruptive changes
to their existing designs? Is there a mental framework/pattern that can be
used while thinking about the design of autonomous embedded systems?

These are rather big questions. Publication D is a first, exploratory step
towards answering them. The ideas in this report have been partially triggered
by the work with the reference architecture.

The paper postulates that all intelligent autonomous systems, regardless
of their level of autonomy, can be described by a finitely recursive pattern con-
sisting of four components: User, Environment, Control and the Self (Figure
3.2). The User is the entity that tells the autonomous system what it must do,
and a User model enables the autonomous system to interpret and understand
the wishes of the User. The Environment is a representation of the external
and internal world that the autonomous system operates in. The Control is
any output being controlled by the system. The Self is the accumulation of
intelligence that is ultimately responsible for the behavior of the system. It
is the entity that is aware of the different system components and how they

38 CHAPTER 3. CONTRIBUTIONS

Environment| Control

Figure 3.2: Components of an intelligent, autonomous system

must interact in order to form the desired system behavior. The Self is the
"consciousness" within the system, if such a poetic analogy is allowed within
the realm of engineering.

In most of the current system designs, this Self is implicit. It is present
as a result of the overall system construction. This means that there is no
specific component or subsystem that is responsible for the behavior of the
entire system, and which directs and monitors the functioning of all the other
subsystems. We claim that it is necessary to have a single', explicit Self in
a system, which is responsible for the ultimate behavior of the whole system.
We argue that as systems and subsystems grow towards autonomy, multiple
implicit selves appear and the conflicts among them are and will continue to be
among the foremost challenges to the integration of autonomous subsystems
a.k.a the architecture of autonomous embedded systems. We hypothesize
that awareness of the four distinct components that make up an intelligent
autonomous system will be a valuable aid during the design of such systems.
We also hypothesize that the introduction of explicit and coordinated Selves
is the way to non-disruptively migrate existing embedded systems designs to
autonomy.

Two other problems identified in publication D are state space explosion
and the problem of partitioning the architecture into relatively independent
sections to manage complexity. These problems are addressed by the auto-
motive industry every few years i.e. solutions are found which fix current and
anticipated needs; however, as the system complexity grows, the same prob-
lems crop up again. Therefore, we argue that these problems will need to be
solved using fundamentally different principles that prevent them from recur-
ring. It is postulated that systems design based on the principles of autonomy
will go a substantial way towards a sustainable solution to these problems.

It is hoped that some of the concepts from publication D will be a foun-
dation for further PhD research on the topic of embedded system autonomy.
A discussion of using the Self for migration of existing systems towards au-

L conceptually single. It may be possible to implement the self in a distributed way.

3.2. AN APPROACH TO EMBEDDED SYSTEMS AUTONOMY 39

tonomy is presented in section 4.2, while the work that needs to be done in
order to concretely develop this approach further is presented in section 5.1.

Chapter 4

Discussion

"..all I wanted was compliance
with my wishes, after reasonable
discussion."

Winston Churchill

The discussion is split into two chronological parts: the past and the future.
A backward glance at the work done is presented in section 4.1, while section
4.2 looks towards the future and discusses a specific approach to designing
autonomous embedded systems.

4.1 Reflection on work done

In section 1.4, a hypothesis was posed that a working answer to the question,
"What is a good way to introduce autonomy in a vehicle for the purpose of
cooperative driving?" could be provided in the form of a reference architec-
ture. So is the hypothesis valid and has the reference architecture presented
in 3.1 provided an answer to the question? To answer this question, it must
be considered that the reference architecture was instantiated and tested in
two scenarios. These were the GCDC 2011 and the CoAct-2012 Cooperative
Driving Demonstration held in Géteborg in November 2012. The two instan-
tiations differ in a number of aspects. For starters, they share very little
code with each other. Secondly, there are differences in the number of soft-
ware components that implement the various reference architecture elements.
The distribution of these components across computing nodes is also differ-
ent. Finally, the CoAct-2012 instantiation has support for overtaking and

41

42 CHAPTER 4. DISCUSSION

lane changing maneuvers, which is distinct new functionality that was miss-
ing from the GCDC 2011 instantiation. Both the instantiations performed
satisfactorily. By ’satisfactory performance’ we mean that at no point did
the architecture impose unreasonable constraints on the system behavior that
was required in the scenario. The architecture remained in the background
and allowed the developers to focus on algorithms. It was also possible to
adapt the system behavior to last minute change requests, for example, the
creation of a 'radio silence’ mode during the GCDC 2011. We also believe
that the reference architecture is valid outside the scenarios. This is because
while creating the reference architecture we carefully considered the require-
ments, needed services and design patterns for a general purpose cooperative
driving system i.e. one which is not scenario specific. Therefore, the refer-
ence architecture has a broader scope than the platooning scenarios for which
it was instantiated. While it is possible that the two differing instantiations
succeeded purely by chance, it is more probable that the careful consideration
that went into the design of the reference architecture paid off. Nevertheless,
it is possible that some edge cases and scenarios are not captured by the ref-
erence architecture. However, based on our experiences with the two different
instantiations and and the careful thinking that went into the reference ar-
chitecture design, we can say with reasonable certainty that the hypothesis
has been validated. The reference architecture has explicitly provided some
requirements, principles and patterns for architecting autonomous embedded
systems. Therefore, it provides partial answers to the first two of the overall
problems mentioned at the start of section 1.4.

How well did the chosen research methodology (based around designing
engineering prototypes) work? The research intended to generate situated
knowledge for addressing the particular need of autonomous, cooperative driv-
ing. The chosen research method resulted in the generation of such knowledge,
as well as the validation of that knowledge. Therefore, if we look at research
methodology purely as the means to an end, then the methodology chosen for
this thesis worked very well indeed. But there are at least two more reasons for
why the methodology worked well. Firstly, the methodology was conducive to
simultaneous development and design activities. The development of a proto-
type in parallel with the design enabled rapid examination of the in-progress
design. Therefore, it was possible to catch some design flaws early, rectify
them, and validate the rectifications even as the design details were still being
finalized. This lead to an incrementally modified and tested design which lead
to a state of continuous confidence in the "design-so-far". Contrast this with
a development approach where a design is theoretically worked out to the last

4.2. AN APPROACH TO INCREMENTAL SYSTEM AUTONOMY 43

detail and only then is the practical validation initiated. The second reason
for why the chosen research methodology worked well is non-technical. It has
to do with the motivation needed by the reseacher working on the problem.
There are those who prefer to work at a somewhat abstract, theoretical level
without caring very much about specific implementations; and there are others
who prefer a more hands-on approach and absolutely need a physical system
to tinker with, in order to stay motivated. The author of this thesis falls into
the latter camp and therefore considers as ideal, a research methodology that
encourages prototype building. Without a real truck to program and drive
around in, this work might never have happened.

Would it have been better to make a number of smaller case studies, instead
of the single, large one that was made? After all, it takes a formidable amount
of time to mess with the tiny practical details that really have nothing at all to
do with the theory being developed. It is also not always convenient to sit and
program in a truck and drive it around at odd hours. We think it is necessary
to go all the way to implementation with at least one case. This is because
doing so often yields valuable insights that may not be obtained from partial
implementations or simulations. Experience with implementation technologies
is helpful for future design work and sometimes the actual implementation may
be of importance to someone you are working with. For example, the GCDC
2011 implementation uncovered several issues with implementations of the
802.11p wireless protocol, which were fixed along the way. Also, in section 1.4,
we stated that we would consider industrial embedded systems. Therefore, we
needed to take into account matters related to product legacy and development
methodologies (vendors, consultants, industrial practices etc.). By working
on a large system, issues related to these aspects manifest themselves more
easily. Given the success of one large case study, it may now be acceptable to
perform a number of smaller studies for further analysis and improvements to
the system.

4.2 An approach to incremental system autonomy

We now return to the last of the overall problems posed in section 1.4. What
are the engineering and technical ways to evolve existing embedded systems
architectures towards those that are expressly designed for autonomy, while
minimizing impact on established, legacy designs? This section briefly de-
scribes one approach that appears promising and could be a topic for further
research. Note also that we now widen the scope from automotive E/E ar-
chitectures to general embedded system architectures, because the approach

44 CHAPTER 4. DISCUSSION

is not automotive specific and is applicable to any embedded system that is
composed of subsystems. A rudimentary implementation of this approach
has already been attempted in the reference architecture (see section 3.3.6
of publication A), although at the time of that implementation, an overall
understanding of the underlying theory had not been developed.

The proposed approach is inspired by the field of Artificial Consciousness
(AC)[32, 58]. AC is devoted to the creation of consciousness in engineering
artifacts, such as a digital computers. Consciousness is defined as the quality
or state of being aware, especially of something within oneself. Applying this
definition to the architecture of embedded systems, it is possible to imagine a
system component, or subsystem, that reifies’ a consciousness within the sys-
tem. In this thesis, we denote such a component, or subsystem, with the term
Self?. The Self can contain knowledge about the other subsystems present
in the system and how they should act and interact to fulfill the system’s
behavioral goals. It could also monitor and direct the subsystems and their
interactions and thus maintain a system state with operational information
regarding the system goals being achieved. Such knowledge is a simplified
form of awareness within the system and therefore, a means for system con-
sciousness.

The Self could be non-disruptively introduced into an existing embedded
system and its capabilities can be gradually enhanced. Initially, there would be
no requirement for heavy modifications to the other subsystems and the Self
itself would have extremely limited capabilities, perhaps simple monitoring
and reporting. But gradually, more capabilities could be added to the Self,
so that it becomes active in decision making and directing the functioning of
the other subsystems. As the architecture evolves, the design of the other
subsystems could be modified in such a way that they can better interact
with the Self. The ultimate, if rather abstract, goal would be to take the
system level knowledge embedded in the head of the system designer(s) and
system users and build it right into the Self, so that the system itself can
make decisions similar to those that the designers or users would make. The
designer’s knowledge would be used to understand and direct the detailed
subsystem behavior, while the user’s knowledge would be used for high level
operation of the system. As the capabilities of the Self rise, the machine will
be able to perform its tasks with less and less human intervention and this,
by definition, is progressive autonomy.

LReify (verb) /'1és fi/: Make (something abstract) more concrete or real.
2The discussion of the Self in this section is directly triggered by, and builds upon, the
concepts introduced in appended paper D and briefly described in section 3.2.

4.2. AN APPROACH TO INCREMENTAL SYSTEM AUTONOMY 45

User
interface

{

Self

D Subsystem

Figure 4.1: Two elements of autonomy

Consider, for the sake of argument, a system as shown in Figure 4.1. It
shows a system made up of five subsystems, with two additional entities: A
User Interface and the Self. The User Interface is, from the system’s per-
spective, the single channel via which the demands of the system’s user are
obtained. Every interaction that the user has with the machine and its oper-
ational controls is captured by the User Interface and this is then passed on
to the Self. None of the subsystems directly see the user demands. The Self
interprets the user demands and directs the subsystems’ operations in order
to meet the demands. The Self may also choose to ignore a User demand
entirely, if it deems such an action appropriate. The Self may also monitor
the subsystem actions and provide appropriate feedback to the user, via the
User Interface.

What advantages would such a scheme provide over existing architectures?
To begin with, each subsystem would not necessarily have to know about the
overall system state before deciding whether to perform its commanded action.
Having the Self interpret and filter the user’s demands prevents a scenario
where a subsystem directly responds to the user demands and causes a system
level problem, whilst fulfilling its own local goals. A subsystem need not have
to constantly monitor a global system state before performing its actions,
because it may assume that if the action request has come from the Self, then
it is safe to perform that action. This could lead to simplification of subsystem
local logic and decision making. The Self becomes the natural and appropriate

46 CHAPTER 4. DISCUSSION

place for proactive control and resolution of conflicts among the subsystems
with regards to resources, intended actions and unintended consequences. A
quick example illustrates this point. There is an anecdotal case involving a
truck parked uphill, with its engine and air conditioner running. As the Sun
shines in through the window, the cabin internal temperature rises, causing
the air conditioning (AC) ECU to do more cooling. In order to fulfill its task,
the AC ECU requests more power from the engine. The engine ECU revs up
the engine in order to generate more power. The parking brake ECU notices
the engine revving up, decides that the driver is attempting to drive away
and releases the parking brake. Such unintended interaction among features
is referred to as feature interaction. In a system with a User-Self, like the
one in Figure 4.1, the Self would ideally know that its current prime directive
is Do Not Move and would not allow the parking brake to be released, and
even if the parking brake ECU ’went rogue’ the Self would involve the braking
system to satisfy its prime directive. Of course, a bad design/implementation
of the Self could prevent this from happening, but the point here is that in
the current architecture, with no Self, there is no higher level logic in the
system that ’knows’ that the system is currently required to be motionless.
Introducing a Self merely provides a convenient mechanism to aggregate and
direct system level behavior. For long term autonomy, the Self is the place for
connecting the planning and prioritizing mechanisms needed for generation
of appropriate system behavior. In summary, this is a feasible engineering
mechanism to give the machine a mind of its own.

It may be argued that the Self becomes a single point of failure for the
entire system. This is true, to a certain extent. Analogously, even biological
organisms (humans) have their brains as a single point of failure, but this de-
sign works well enough that it has not been discarded during natural selection
yet. In the case of machines, the problem can be alleviated via specific imple-
mentation methods. For example, having replicated Selves, with one active
and the others in "hot standby’ mode can lower the risk associated with the
catastrophic failure of one Self, for safety critical systems. Alternatively, the
implementation of the Self could be distributed, so that partial functionality
can still be provided even if some components fail.

Note that the concept of the Self is not just the old concept of 'centralized’
(versus distributed) control stated in a different way. While we argue that the
Self should be a conceptually unified entity, we do not make any statements
regarding the physical implementation (centralized vs distributed) of the Self.
It should be possible to implement a conceptually single Self in a physically
distributed manner. Also, even if the Self is implemented as a single physical

4.2. AN APPROACH TO INCREMENTAL SYSTEM AUTONOMY 47

entity, it is the system level intelligence that is being centralized, leaving open
the possibility of distributing specific control loops.

A potential problem for autonomous systems incorporating a Self (and
even for complex systems in general) is a lack of determinism. This means
that due to the sheer complexity of a system, or by virtue of its autonomy, it
may be impossible to correctly predict the system behavior under all possible
circumstances. The user may not even be in absolute control of the machine,
as his/her demands may simply be disregarded by the Self. Such scenarios
are unacceptable to the designers of current embedded systems. However,
increased autonomy may force the acceptance criteria to shift from determin-
istically correct behavior to probabilistically correct behavior. Probabilistic
correctness in this context would imply that the probability of incorrect be-
havior approaches zero when the design practices, architectures and runtime
checks and guards are followed.

Chapter 5

Future work and Conclusion

A conclusion is the place where
you got tired of thinking.

Martin H. Fischer

5.1 Future work

The approach and discussion from section 4.2 will serve as the basis of our
future work in embedded systems autonomy. The future work shall then con-
sist of a more formal and detailed development of the artificial consciousness
approach. This would be followed by an implementation, which would then
be validated. Ideally, the approach should also be tested in domains other
than automotive.

Section 4.2 merely presented an outline of the approach. Digging deeper,
at least the following questions need to be answered before the approach can
be considered as fully developed:

1. What is a good way to encode knowledge about a system’s construction
and operation into the Self? We have stated that the Self needs to know
about the presence and capabilities of the different subsystems and how
the subsystems should interact to fulfil the system’s current behavioral
goal. Therefore, the Self needs to constantly represent, refresh and rea-
son on its own knowledge of the system and this question is related to
the ways and means of doing so.

49

50 CHAPTER 5. FUTURE WORK AND CONCLUSION

2. How should the user’s demands be internally represented and commu-
nicated with the Self? The user’s intentions need to be translated into
formal semantics in order to communicate them to the Self. The user
interface of a vehicle will probably retain the familiar controls which are
present in existing vehicles, but the interpretations of the control inputs
obtained from the user may have to be changed or represented in specific
ways. For example, depression of the brake pedal could be understood
and represented as an intention of ’slow down’, rather than being di-
rectly interpreted as a proportion of braking torque to be applied at the
brake disc of each wheel.

3. How can subsystems be designed so that they can better interact with
the Self? What forms should such interactions take?

4. What are the patterns of monitoring and control that the Self can exert
on the subsystems?

5. What reference architectures can be generated around these concepts?
6. How can such architectures be verified?

The future work will commence by finding answers to the above questions.

5.2 Conclusion

This licentiate thesis effort started with broad questions about architecting au-
tonomous embedded systems. The scope was narrowed down to architectures
for cooperative autonomous driving and the research question was formulated
(section 1.4) as "What is a good way to introduce autonomy in a ve-
hicle for the purpose of cooperative driving?"' We also put forth the
hypothesis that a working answer to this question could be provided in the
form of a reference architecture for cooperative driving.

During the course of this thesis work, a reference architecture for cooper-
ative driving was created. The reference architecture was instantiated on two
separate occasions, and on both the occasions, the respective instantiations
enabled achievement of vehicle autonomy in a satisfactory manner. Based on
these instantiations, and a rational discourse on the design of the reference
architecture, we feel that our hypothesis has been validated.

The specific contributions of this work are

1. Two functioning prototype vehicles capable of autonomous motion in
cooperative driving scenarios

5.2. CONCLUSION 51

2. A validated reference architecture for cooperative driving

3. A proposed approach for introducing progressive autonomy in embedded
systems architectures.

The approach mentioned in point 3 above requires a more thorough evaluation.
It was spawned by the work done on creating and instantiating the reference
architecture for cooperative driving. The approach involves introducing an
artificial consciousness within the system, whose capabilities can be increased
over successive design iterations. Future work will consist of more detailed
investigations and development of this artificial consciousness approach.

Bibliography

Response to 'The Rise and Fall of CORBA’ by Michi Henning, . URL
http://www.dre.vanderbilt.edu/~schmidt/corba-response.html.

CORBA, . URL http://www.corba.org/.

IBM Unveils New Autonomic Computing Deployment Model. URL
http://www-03.ibm.com/press/us/en/pressrelease/464.wss.

Ice-E. URL http://zeroc.com/icee/index.html.

Comments on the MISRA C coding guidelines. URL http://wuw.
knosof.co.uk/misracom.html.

The OMG Data Distribution Portal. URL http://portals.omg.org/
dds/.

The Player Project. URL http://playerstage.sourceforge.net/.
ROS: The Robot Operating System. URL http://www.ros.org.

YARP: Yet Another Robot platform. URL http://eris.liralab.it/
yarp/.

OMQ - Multithreading Magic. URL http://www.zeromq.org/
whitepapers:multithreading-magic.

The Internet Communications Engine (ICE). URL http://www.zeroc.
com/ice.html.

IEEE Standard Glossary of Software Engineering Terminology,
1990. URL http://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=159342.

53

http://www.dre.vanderbilt.edu/~schmidt/corba-response.html
http://www.corba.org/
http://www-03.ibm.com/press/us/en/pressrelease/464.wss
http://zeroc.com/icee/index.html
http://www.knosof.co.uk/misracom.html
http://www.knosof.co.uk/misracom.html
http://portals.omg.org/dds/
http://portals.omg.org/dds/
http://playerstage.sourceforge.net/
http://www.ros.org
http://eris.liralab.it/yarp/
http://eris.liralab.it/yarp/
http://www.zeromq.org/whitepapers:multithreading-magic
http://www.zeromq.org/whitepapers:multithreading-magic
http://www.zeroc.com/ice.html
http://www.zeroc.com/ice.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342

[22]

[23]

BIBLIOGRAPHY

MISRA-C:2004 Guidelines for the use of the C language in critical sys-
tems. 2004. ISBN 0 9524156 2 3.

Guidelines for the use of the programming language C in vehicle based
systems, 2004. URL http://www.misra-c.com/MISRAChome/tabid/
181/Default.aspx.

Orocos RTT and ROS integrated, 2009. URL
http://www.willowgarage.com/blog/2009/06/10/
orocos—-rtt-and-ros-integrated.

Open Robot Control Software. http://www.orocos.org, 2011. URL
http://www.orocos.org.

ZeroMQ: The Intelligent Transport Layer http://www.zeromq.org/,
2012. URL http://www.zeromq.org/.

AUTOSAR Consortium, 2013. URL http://wuw.autosar.org.

GENESYS - GENeric Embedded SYStem Platform, 2013. URL http:

//www.genesys-platform.eu/.

J Albus. The engineering of mind. Information Sciences, 117(1-
2):1-18, July 1999. ISSN 00200255. doi: 10.1016/S0020-0255(98)
10102-0. URL http://linkinghub.elsevier.com/retrieve/pii/
50020025598101020.

J. Albus and F.G. Proctor. A reference model architecture for intelligent
hybrid control systems. In Proceedings of the 1996 Triennial World
Congress, International Federation of Automatic Control (IFAC), 1996.
URL http://www.isd.mel.nist.gov/documents/albus/ifac13.pdf.

James S Albus, Ronald Lumia, J Fiala, A J Wavering, and Harry G
McCain. NASREM - The NASA/NBS Standard Reference Model for
Telerobot Control System Architecture. In proceedings of the 20th In-
ternational Symposium on Industrial Robots, number NIST 1235. NIST,
1989.

J.S. Albus. Outline for a theory of intelligence. IEEE Transactions on
Systems, Man, and Cybernetics, 21(3):473-509, 1991. ISSN 00189472.
doi: 10.1109/21.97471. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=97471.

http://www.misra-c.com/MISRAChome/tabid/181/Default.aspx
http://www.misra-c.com/MISRAChome/tabid/181/Default.aspx
http://www.willowgarage.com/blog/2009/06/10/orocos-rtt-and-ros-integrated
http://www.willowgarage.com/blog/2009/06/10/orocos-rtt-and-ros-integrated
http://www.orocos.org
http://www.zeromq.org/
http://www.autosar.org
http://www.genesys-platform.eu/
http://www.genesys-platform.eu/
http://linkinghub.elsevier.com/retrieve/pii/S0020025598101020
http://linkinghub.elsevier.com/retrieve/pii/S0020025598101020
http://www.isd.mel.nist.gov/documents/albus/ifac13.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=97471
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=97471

BIBLIOGRAPHY 95

[24]

[25]

[26]

[30]

J.S. Albus. A reference model architecture for intelligent systems design.
An introduction to intelligent and autonomous control, pages 27-56,
1993. URL http://www.isd.mel.nist.gov/documents/albus/Ref_
Model_Arch345.pdf.

John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass,
Christian Lebiere, and Yulin Qin. An integrated theory of the mind.
Psychological review, 111(4):1036—60, October 2004. ISSN 0033-295X.
doi: 10.1037/0033-295X.111.4.1036. URL http://www.ncbi.nlm.nih.
gov/pubmed/15482072.

Richard Anthony, Dejiu Chen, Martin Térngren, Detlef Scholle, and
Martin Sanfridson. Autonomic Middleware for Automotive Embed-
ded Systems. In Athanasios V. Vasilakos, Manish Parashar, Stama-
tis Karnouskos, and Witold Pedrycz, editors, Autonomic Communi-
cation. Springer US, Boston, MA, 2009. ISBN 978-0-387-09752-7.
doi: 10.1007/978-0-387-09753-4. URL http://www.springerlink.
com/index/10.1007/978-0-387-09753-4.

PJ Antsaklis, KM Passino, and SJ Wang. Towards intelligent au-
tonomous control systems: Architecture and fundamental issues. Jour-
nal of Intelligent € Robotic Systems, pages 315-342, 1989. URL
http://www.springerlink.com/index/P86Q5832418GT7W7 .pdf.

Anthony J Barbera, James S Albus, and Leonard S Haynes. RCS : The
NBS Real -Time Control System. 1984.

R. Brooks. A robust layered control system for a mobile robot. IEEFE
Journal on Robotics and Automation, 2(1):14-23, 1986. ISSN 0882-4967.
doi: 10.1109/JRA.1986.1087032. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1087032.

Manfred Broy, Ingolf H. Kruger, Alexander Pretschner, and
Christian Salzmann. Engineering Automotive Software. Pro-
ceedings of the IEEE, 95(2):356-373, February 2007. ISSN
0018-9219. doi: 10.1109/JPROC.2006.888386. URL http:
//papers.sae.org/r-361http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4142919.

H. Bruyninckx. Open robot control software: the OROCOS project.
Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No.01CH37164), 3:2523-2528, 2001. doi:

http://www.isd.mel.nist.gov/documents/albus/Ref_Model_Arch345.pdf
http://www.isd.mel.nist.gov/documents/albus/Ref_Model_Arch345.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15482072
http://www.ncbi.nlm.nih.gov/pubmed/15482072
http://www.springerlink.com/index/10.1007/978-0-387-09753-4
http://www.springerlink.com/index/10.1007/978-0-387-09753-4
http://www.springerlink.com/index/P86Q5832418GT7W7.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087032
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087032
http://papers.sae.org/r-361 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4142919
http://papers.sae.org/r-361 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4142919
http://papers.sae.org/r-361 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4142919

56

[33]

[38]

BIBLIOGRAPHY

10.1109/ROBOT.2001.933002. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=933002.

Giorgio Buttazzo. Artificial consciousness: Utopia or real possibil-
ity? Computer, 34(7):24-30, July 2001. ISSN 00189162. doi: 10.
1109/2.933500. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper .htm?arnumber=933500.

D Chen, R Johansson, H Lonn, H Blom, M Walker, Y Papadopou-
los, S Torchiaro, F Tagliabo, and A Sandberg. Integrated safety
and architecture modeling for automotive embedded systems*. e &
i Elektrotechnik und Informationstechnik, 128(6):196-202, June 2011.
ISSN 0932-383X. doi: 10.1007/s00502-011-0007-7. URL http://www.
springerlink.com/index/10.1007/s00502-011-0007~-7.

DJ Chen and R Anthony. An architectural approach to autonomics
and self-management of automotive embedded electronic systems. In
4th European Congres ERTS (Embedded Real Time Software), pages
1-8, 2008. URL http://kth.diva-portal.org/smash/record.jsf?
pid=diva2:497311.

Andrew Chong. Driving Asia - As Automotive Electronics Transforms
a Region. Infineon Technologies Asia Pacific Pte Ltd, 2010. URL http:
//www.infineon.com/cms/cn/DrivingAsia.html.

Philippe Automotive Cuenot, Patrick Frey, Rolf Johansson, Henrik
Lonn, Martin Térngren, and Carl-Johan Sjostedt. Engineering sup-
port for automotive embedded systems - Beyond AUTOSAR. (May):
2008-2008, 2008.

EW DAVID and LM KAREN. Planning and reacting in uncertain and
dynamic environments. Journal of Experimental & Theoretical Artificial
Intelligence, 1995. URL http://www.tandfonline.com/doi/abs/10.
1080/09528139508953802.

M. Di Natale and A.L. Sangiovanni-Vincentelli. Moving From
Federated to Integrated Architectures in Automotive: The Role of
Standards, Methods and Tools. Proceedings of the IEEE, 98(4):603—
620, April 2010. ISSN 0018-9219. doi: 10.1109/JPROC.2009.2039550.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
544005%http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5440059.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=933002
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=933002
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=933500
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=933500
http://www.springerlink.com/index/10.1007/s00502-011-0007-7
http://www.springerlink.com/index/10.1007/s00502-011-0007-7
http://kth.diva-portal.org/smash/record.jsf?pid=diva2:497311
http://kth.diva-portal.org/smash/record.jsf?pid=diva2:497311
http://www.infineon.com/cms/cn/DrivingAsia.html
http://www.infineon.com/cms/cn/DrivingAsia.html
http://www.tandfonline.com/doi/abs/10.1080/09528139508953802
http://www.tandfonline.com/doi/abs/10.1080/09528139508953802
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5440059 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5440059
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5440059 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5440059
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5440059 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5440059

BIBLIOGRAPHY o7

[39]

[45]

W. Duch, R.J. Oentaryo, and M. Pasquier. Cognitive Architec-
tures: Where do we go from here? In Artificial general intelligence,
2008. URL http://books.google.com/books?hl=en&lr=&id=a_
ZR81725z0C&oi=fnd&pg=PA122&dq=Cognitive+Architectures+:
+Where+do+we+got+from+here+),3F&ots=n15Trrs_KI&sig=rcL8hcj_
ZNbk-840BZiCvQXP_wE.

Ulrik Eklund, Orjan Askerdal, Johan Granholm, Anders Alminger, and
Jakob Axelsson. Experience of introducing reference architectures in
the development of automotive electronic systems. In Proceedings of the
second international workshop on Software engineering for automotive
systems - SEAS ’05, pages 1-6, New York, New York, USA, 2005. ACM
Press. ISBN 1595931287. doi: 10.1145/1083190.1083195. URL http:
//portal.acm.org/citation.cfm?doid=1083190.1083195.

Ayssam Elkady and Tarek Sobh. Robotics Middleware: A Comprehen-
sive Literature Survey and Attribute-Based Bibliography. Journal of
Robotics, 2012:1-15, 2012. ISSN 1687-9600. doi: 10.1155/2012/959013.
URL http://www.hindawi.com/journals/jr/2012/959013/.

TLJ Ferris. On the methods of research for systems engineering. Annual
Conference on Systems Engineering Research, 2009(April), 2009. URL
http://cser.lboro.ac.uk/papers/S10-62.pdf.

TLJ Ferris. Engineering Design as Research. In Manuel
Mora, Ovsei Gelman, Annette L. Steenkamp, and Mahesh Rais-
inghani, editors, Research Methodologies, Innovations and Philoso-
phies in Software Systems Engineering and Information Systems.
IGI Global, February 2012. ISBN 9781466601796. doi: 10.
4018/978-1-4666-0179-6. URL http://services.igi-global.com/
resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0179-6.

Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. = Towards
long-lived robot genes. Robotics and Autonomous Systems, 56
(1):29-45, January 2008. ISSN 09218890. doi: 10.1016/j.robot.
2007.09.014. URL http://linkinghub.elsevier.com/retrieve/pii/
50921889007001364.

Brian Ford, Peter Bull, and Alan Grigg. Adaptive architectures for
future highly dependable, real-time systems. In 7th Annual Con-
ference on Systems Engineering Research, volume 2009, 2009. URL
http://research.rti.com/sites/default/files/2007_brian_

http://books.google.com/books?hl=en&lr=&id=a_ZR81Z25z0C&oi=fnd&pg=PA122&dq=Cognitive+Architectures+:+Where+do+we+go+from+here+%3F&ots=n15Trrs_KI&sig=rcL8hcj_ZN5k-84oBZiCvQXP_wE
http://books.google.com/books?hl=en&lr=&id=a_ZR81Z25z0C&oi=fnd&pg=PA122&dq=Cognitive+Architectures+:+Where+do+we+go+from+here+%3F&ots=n15Trrs_KI&sig=rcL8hcj_ZN5k-84oBZiCvQXP_wE
http://books.google.com/books?hl=en&lr=&id=a_ZR81Z25z0C&oi=fnd&pg=PA122&dq=Cognitive+Architectures+:+Where+do+we+go+from+here+%3F&ots=n15Trrs_KI&sig=rcL8hcj_ZN5k-84oBZiCvQXP_wE
http://books.google.com/books?hl=en&lr=&id=a_ZR81Z25z0C&oi=fnd&pg=PA122&dq=Cognitive+Architectures+:+Where+do+we+go+from+here+%3F&ots=n15Trrs_KI&sig=rcL8hcj_ZN5k-84oBZiCvQXP_wE
http://portal.acm.org/citation.cfm?doid=1083190.1083195
http://portal.acm.org/citation.cfm?doid=1083190.1083195
http://www.hindawi.com/journals/jr/2012/959013/
http://cser.lboro.ac.uk/papers/S10-62.pdf
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0179-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0179-6
http://linkinghub.elsevier.com/retrieve/pii/S0921889007001364
http://linkinghub.elsevier.com/retrieve/pii/S0921889007001364
http://research.rti.com/sites/default/files/2007_brian_ford_adaptive_arch_for_future_highly_dependant_RT_systems_S08-45.pdf
http://research.rti.com/sites/default/files/2007_brian_ford_adaptive_arch_for_future_highly_dependant_RT_systems_S08-45.pdf
http://research.rti.com/sites/default/files/2007_brian_ford_adaptive_arch_for_future_highly_dependant_RT_systems_S08-45.pdf

58

[46]

BIBLIOGRAPHY

ford_adaptive_arch_for_future_highly_dependant RT_systems_
S08-45.pdf.

Simon Fiirst, B M W Group, Jiirgen Méssinger, Stefan Bunzel, Thomas
Weber, Frank Kirschke-biller, Ford Motor Company, Klaus Lange,
and Volkswagen Ag. AUTOSAR - A Worldwide Standard is on the
Road. VDI Congress, pages 1-16, 2009. URL http://www.win.tue.
nl/~mvdbrand/courses/sse/0910/AUTOSAR. pdf.

Erann Gat. Integrating planning and reacting in a heterogenous asyn-
chronous architecture for controlling real-world mobile robots. aaat,
pages 809-815, 1992.

B Gerkey, RT Vaughan, and Andrew Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings of
the International Conference on Advanced Robotics (ICAR), number
Icar, pages 317-323, 2003. URL http://robotics.usc.edu/~gerkey/
research/final_papers/icar03-player.pdf.

Les Hatton. Safer language subsets: an overview and a case history,
MISRA C. Information and Software Technology, 46(7):465-472, June
2004. ISSN 09505849. doi: 10.1016/j.infsof.2003.09.016. URL http:
//linkinghub.elsevier.com/retrieve/pii/S0950584903002076.

Les Hatton. Language subsetting in an industrial context: A comparison
of MISRA C 1998 and MISRA C 2004. Information and Software Tech-
nology, 49(5):475-482, May 2007. ISSN 09505849. doi: 10.1016/j.infsof.
2006.07.004. URL http://linkinghub.elsevier.com/retrieve/pii/
S50950584906000991.

N. Hawes, J.L. Wyatt, and A. Sloman. An Architecture Schema for
Embodied Cognitive Systems. School of Computer Science, University of
Birmingham, 2006.

Nick Hawes, Michael Zillich, and Jeremy Wyatt. BALT & CAST:
Middleware for Cognitive Robotics. In RO-MAN 2007 - The 16th IEEE
International Symposium on Robot and Human Interactive Commu-
nication, pages 998-1003. IEEE, 2007. ISBN 978-1-4244-1634-9. doi:
10.1109/ROMAN.2007.4415228. URL http://ieeexplore.ieee.org/
xpls/abs_all. jsp?arnumber=4415228http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4415228.

http://research.rti.com/sites/default/files/2007_brian_ford_adaptive_arch_for_future_highly_dependant_RT_systems_S08-45.pdf
http://research.rti.com/sites/default/files/2007_brian_ford_adaptive_arch_for_future_highly_dependant_RT_systems_S08-45.pdf
http://research.rti.com/sites/default/files/2007_brian_ford_adaptive_arch_for_future_highly_dependant_RT_systems_S08-45.pdf
http://research.rti.com/sites/default/files/2007_brian_ford_adaptive_arch_for_future_highly_dependant_RT_systems_S08-45.pdf
http://www.win.tue.nl/~mvdbrand/courses/sse/0910/AUTOSAR.pdf
http://www.win.tue.nl/~mvdbrand/courses/sse/0910/AUTOSAR.pdf
http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf
http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0950584903002076
http://linkinghub.elsevier.com/retrieve/pii/S0950584903002076
http://linkinghub.elsevier.com/retrieve/pii/S0950584906000991
http://linkinghub.elsevier.com/retrieve/pii/S0950584906000991
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4415228 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4415228
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4415228 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4415228
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4415228 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4415228

BIBLIOGRAPHY 99

[53]

[54]

[55]

(61]

B Hayes-Roth. An architecture for adaptive intelligent systems. Artifi-
cial Intelligence, pages 1-49, 1995. URL http://www.sciencedirect.
com/science/article/pii/000437029400004K.

Barbara Hayes-Roth. A blackboard architecture for control. Arti-
ficial Intelligence, 26(3):251-321, July 1985. ISSN 00043702. doi:
10.1016/0004-3702(85)90063-3. URL http://linkinghub.elsevier.
com/retrieve/pii/0004370285900633.

M. Henning. A new approach to object-oriented middleware. IEEE
Internet Computing, 8(1):66-75, January 2004. ISSN 1089-7801.
doi: 10.1109/MIC.2004.1260706. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1260706.

Michi Henning. The rise and fall of CORBA. Technical Report June,
2006. URL http://queue.acm.org/detail.cfm?id=1142044.

Michi Henning. Choosing middleware: Why performance and scala-
bility do (and do not) matter, 2009. URL www.zeroc.com/articles/
IcePerformanceWhitePaper.pdf.

Douglas R. Hofstadter and Daniel C. Dennett. The Mind’s 1. Bantam
Books, 1982. ISBN 0-553-34584-2.

MC Huebscher and JA McCann. A survey of autonomic computing-
degrees, models, and applications. ACM Comput. Surv, V:1-31,
2008. URL https://dspace.ist.utl.pt/bitstream/2295/584880/
1/Autonomic.

Sylvia Ilieva and Mario Zagar. GENESIS - A Framework for Global En-
gineering of Embedded Systems. Genesis, pages 87-93, 2008. doi: 10.
1145/1370868.1370884. URL http://www.mrtc.mdh.se/index.php?
choice=publications&id=1424.

International Organization For Standardization. ISO/TEC 42010:2007
Systems and software engineering - Recommended practice for archi-
tectural description of software-intensive systems, 2007. URL http:
//www.iso-architecture.org/.

B Jacob, R Lanyon-Hogg, DK Nadgir, and AF Yassin. A practical
guide to the IBM autonomic computing toolkit. 2004. URL http:
//www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf.

http://www.sciencedirect.com/science/article/pii/000437029400004K
http://www.sciencedirect.com/science/article/pii/000437029400004K
http://linkinghub.elsevier.com/retrieve/pii/0004370285900633
http://linkinghub.elsevier.com/retrieve/pii/0004370285900633
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1260706
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1260706
http://queue.acm.org/detail.cfm?id=1142044
www.zeroc.com/articles/IcePerformanceWhitePaper.pdf
www.zeroc.com/articles/IcePerformanceWhitePaper.pdf
https://dspace.ist.utl.pt/bitstream/2295/584880/1/Autonomic
https://dspace.ist.utl.pt/bitstream/2295/584880/1/Autonomic
http://www.mrtc.mdh.se/index.php?choice=publications&id=1424
http://www.mrtc.mdh.se/index.php?choice=publications&id=1424
http://www.iso-architecture.org/
http://www.iso-architecture.org/
http://www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf

[64]

[67]

[70]

BIBLIOGRAPHY

Alma L. Juarez Dominguez. Feature Interaction Detection in the
Automotive Domain. In 2008 23rd IEEE/ACM International Con-
ference on Automated Software Engineering, pages 521-524. IEEE,
September 2008. ISBN 978-1-4244-2187-9. doi: 10.1109/ASE.2008.
97. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm7arnumber=4639390.

J.O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, 36(1):41-50, January 2003. ISSN 0018-9162. doi: 10.
1109/MC.2003.1160055. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1160055.

Jana Koehler and C Giblin. On autonomic computing architectures.
Technical report, 2003. URL https://www.zurich.ibm.com/pdf/csc/
rz3487 .pdf.

Hermann Kopetz. The Complexity Challenge in Embedded Sys-
tem Design. In 2008 11th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing
(ISORC), pages 3-12. IEEE, May 2008. ISBN 978-0-7695-3132-8.
doi: 10.1109/ISORC.2008.14. URL http://ieeexplore.ieee.org/
xpls/abs_all. jsp?arnumber=4519555http://ieeexplore.iecee.
org/lpdocs/epic03/wrapper.htm?arnumber=4519555.

James Kramer and Matthias Scheutz. Development environments
for autonomous mobile robots: A survey. Autonomous Robots,
pages 1-36, 2007. URL http://www.springerlink.com/index/
V57531724H624440 . pdf.

Philippe Kruchten. The Rational Unified Process. Rational Software
White Paper. Addison-Wesley, 2003. ISBN 0321197704.

Thomas S Kuhn. The Structure of Scientific Revolutions, volume II of
SO Source: University of Chicago Press: Chicago. (1962). University of
Chicago Press, 1970. ISBN 0226458032. doi: 10.1119/1.1969660. URL
http://www.jstor.org/stable/10.2307/2183664.

J Laird. SOAR: An architecture for general intelligence. Artifi-
cial Intelligence, 33(1):1-64, September 1987. ISSN 00043702. doi:
10.1016/0004-3702(87)90050-6. URL http://linkinghub.elsevier.
com/retrieve/pii/0004370287900506.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4639390
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4639390
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1160055
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1160055
https://www.zurich.ibm.com/pdf/csc/rz3487.pdf
https://www.zurich.ibm.com/pdf/csc/rz3487.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4519555 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519555
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4519555 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519555
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4519555 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519555
http://www.springerlink.com/index/V57531724H624440.pdf
http://www.springerlink.com/index/V57531724H624440.pdf
http://www.jstor.org/stable/10.2307/2183664
http://linkinghub.elsevier.com/retrieve/pii/0004370287900506
http://linkinghub.elsevier.com/retrieve/pii/0004370287900506

BIBLIOGRAPHY 61

[71]

[72]

73]

[79]

Pat Langley and Dongkyu Choi. A unified cognitive architecture for
physical agents. Proceedings of the National Conference on Artificial . . .
2006. URL http://www.aaai.org/Papers/AAAI/2006/AAAT06-231.
pdf.

Ola Larses. Architecting and Modeling Automotive Embedded Systems.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 2005.
URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=
intitle:Architecting+and+Modeling+Automotive+Embedded+
Systems#0.

G. Leen and D. Heffernan. Expanding automotive electronic sys-
tems. Computer, 35(1):88-93, 2002. ISSN 00189162. doi: 10.
1109/2.976923. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=976923.

John McCarthy. What is Artificial Intelligence, 2007. URL http://

www-formal.stanford.edu/jmc/whatisai/whatisai.html.

N. Medvidovic and R.N. Taylor. A classification and comparison frame-
work for software architecture description languages. IFEE Trans-
actions on Software Engineering, 26(1):70-93, 2000. ISSN 00985589.
doi: 10.1109/32.825767. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=825767.

M.D. Mesarovic, D. Macko, and Y. Takahara. Theory of Hierarchical,
Multilevel Systems. Academic Press, 1970.

Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. Yarp: Yet
another robot platform. Jouwrnal on Advanced Robotics, 3(1):43-
48, 2006. URL http://www.intechopen.com/source/pdfs/4161/
InTech-Yarp_yet_another_robot_platform.pdf.

Andreas Metzger. Feature interactions in embedded control systems.
Computer Networks, 45(5):625-644, August 2004. ISSN 13891286. doi:
10.1016/j.comnet.2004.03.002. URL http://linkinghub.elsevier.
com/retrieve/pii/S138912860400043X.

A Meystel. Architectures for intelligent control systems: The science of
autonomous intelligence. In Proceedings of 8th IEEFE International Sym-
posium on Intelligent Control, pages 42-48. IEEE. ISBN 0-7803-1206-6.
doi: 10.1109/ISIC.1993.397726. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=397726.

http://www.aaai.org/Papers/AAAI/2006/AAAI06-231.pdf
http://www.aaai.org/Papers/AAAI/2006/AAAI06-231.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Architecting+and+Modeling+Automotive+Embedded+Systems#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Architecting+and+Modeling+Automotive+Embedded+Systems#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Architecting+and+Modeling+Automotive+Embedded+Systems#0
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=976923
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=976923
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=825767
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=825767
http://www.intechopen.com/source/pdfs/4161/InTech-Yarp_yet_another_robot_platform.pdf
http://www.intechopen.com/source/pdfs/4161/InTech-Yarp_yet_another_robot_platform.pdf
http://linkinghub.elsevier.com/retrieve/pii/S138912860400043X
http://linkinghub.elsevier.com/retrieve/pii/S138912860400043X
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=397726
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=397726

62

[80]

[81]

BIBLIOGRAPHY

A Meystel. Intelligent control: A sketch of the theory. Journal of
Intelligent € Robotic Systems, (September):97-107, 1989. URL http:
//www.springerlink.com/index/q4786106075j8710.pdf.

Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. Mid-
dleware for Robotics: A Survey. In 2008 IEEE Conference on
Robotics, Automation and Mechatronics, pages 736-742. IEEE, Septem-
ber 2008. ISBN 978-1-4244-1675-2. doi: 10.1109/RAMECH.
2008.4681485. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4681485.

Jiurgen Mossinger. Software in Automotive Systems. IEEE Soft-
ware, 27(2):92-94, 2010. ISSN 07407459. doi: 10.1109/MS.2010.
55. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5420803.

Molaletsa Namoshe, N S Tlale, C M Kumile, and G. Bright. Open
middleware for robotics. 2008 15th International Conference on Mecha-
tronics and Machine Vision in Practice, pages 189-194, December 2008.
doi: 10.1109/MMVIP.2008.4749531. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4749531.

Marco Di Natale. Design and Development of Component-Based Em-
bedded Systems for Automotive Applications. Time, pages 15-29, 2008.

I.A.D. Nesnas, Anne Wright, Max Bajracharya, Reid Simmons, and
Tara Estlin. CLARAty and challenges of developing interopera-
ble robotic software. In Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat.
No.03CHS37/53), volume 3, pages 2428-2435. IEEE, 2003. ISBN 0-7803-
7860-1. doi: 10.1109/TR0OS.2003.1249234. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1249234.

Manish Parashar and Salim Hariri. Autonomic computing: An overview.
Unconventional Programming Paradigms, pages 247-259, 2005. URL
http://www.springerlink.com/index/8JWVM292E2N5NPMG. pdf.

G. Pardo-Castellote. OMG data-distribution service: architec-
tural overview. In 23rd International Conference on Distributed
Computing Systems Workshops, 2003. Proceedings., pages 200—
206. TEEE, 2003. ISBN 0-7695-1921-0. doi: 10.1109/ICDCSW.
2003.1203555. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper .htm?arnumber=1203555.

http://www.springerlink.com/index/q4786106075j8710.pdf
http://www.springerlink.com/index/q4786106075j8710.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4681485
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4681485
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5420803
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5420803
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4749531
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4749531
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1249234
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1249234
http://www.springerlink.com/index/8JWVM292E2N5NPMG.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1203555
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1203555

BIBLIOGRAPHY 63

(3]

Gerardo Pardo-castellote. Data-Centric Programming Best Practices :
Using DDS to Integrate Real-World Systems. Technical Report Novem-
ber, 2010. URL http://community.rti.com/sites/default/files/
DDS_Best_Practices_WP.pdf.

Magnus Persson. Adaptive Middleware for Self-Configurable Embedded
Real-Time Systems. Licentiate thesis, KTH Stockholm, 2009. URL
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11608.

R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp,
David P. Miller, and Mark G. Slack. Experiences with an architecture
for intelligent, reactive agents. Journal of Experimental & Theoretical
Artificial Intelligence, 9(2-3):237-256, April 1997. ISSN 0952-813X. doi:
10.1080/095281397147103. URL http://www.tandfonline.com/doi/
abs/10.1080/095281397147103.

A Pretschner, M Broy, I H Kruger, and T Stauner. Software Engineering
for Automotive Systems: A Roadmap. Future of Software Engineering,
2007. FOSE 07, pages 55-71, May 2007. doi: 10.1109/FOSE.2007.22.
URL http://dx.doi.org/10.1109/F0OSE.2007.22.

Morgan Quigley and Brian Gerkey. ROS: an open-source Robot Op-
erating System. In ICRA Workshop on Open Source Software, num-
ber Figure 1, 2009. URL http://publ.willowgarage.com/~konolige/
cs225B/docs/quigley-icra2009-ros. pdf.

TN Qureshi, Magnus Persson, DJ Chen, M Toérngren, and L Feng.
Model-Based Development of Middleware forSelf-Configurable Embed-
ded Real Time Systems: Experiences from the DySCAS Project.
In Model-Driven Development for Distributed Real-Time Embedded
Systems Summer School (MDD4DRES), 2009. URL http://kth.
diva-portal.org/smash/record. jsf?pid=diva2:495712.

Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded
System Design for Automotive Applications. Computer, 40(10):
42-51, October 2007. ISSN 0018-9162. doi: 10.1109/MC.2007.344.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
4343688http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4343688.

G. Saridis. Control performance as an entropy: An integrated the-
ory for intelligent machines. In Proceedings. 1984 IEEE International

http://community.rti.com/sites/default/files/DDS_Best_Practices_WP.pdf
http://community.rti.com/sites/default/files/DDS_Best_Practices_WP.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11608
http://www.tandfonline.com/doi/abs/10.1080/095281397147103
http://www.tandfonline.com/doi/abs/10.1080/095281397147103
http://dx.doi.org/10.1109/FOSE.2007.22
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://kth.diva-portal.org/smash/record.jsf?pid=diva2:495712
http://kth.diva-portal.org/smash/record.jsf?pid=diva2:495712
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4343688 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4343688
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4343688 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4343688
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4343688 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4343688

64

[100]

[101]

[102]

BIBLIOGRAPHY

Conference on Robotics and Automation, volume 1, pages 594-599. In-
stitute of Electrical and Electronics Engineers. doi: 10.1109/ROBOT.
1984.1087168. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1087168.

G. Saridis. Intelligent robotic control. IEEE Transactions on Automatic
Control, 28(5):547-557, May 1983. ISSN 0018-9286. doi: 10.1109/TAC.
1983.1103278. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1103278.

G.N. Saridis. Knowledge implementation - structures of intelligent con-
trol systems. J. Robot. Syst., 5:255-268, 1988.

Christian Schlegel. Communication Patterns as Key Towards
Component-Based Robotics. International Journal of Advanced Robotic
Systems, 3(1):1, 2006. ISSN 1729-8806. doi: 10.5772/5759. URL
http://www.intechopen.com/journals/international_journal_

of _advanced_robotic_systems/communication_patterns_as_key_
towards_component-based_robotics.

V. Schulte-Coerne, Andreas Thums, and Jochen Quante. Au-
tomotive Software: Characteristics and Reengineering Challenges,
2009. URL http://pi.informatik.uni-siegen.de/stt/29_2/01_
Fachgruppenberichte/SRE/07-quante.pdf.

Azamat Shakhimardanov and Erwin Prassler. Comparative eval-
uation of robotic software integration systems: A case study.
2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3031-3037, October 2007. doi: 10.1109/IROS.
2007.4399375. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper .htm?arnumber=4399375.

Murray Shanahan. Consciousness, Emotion, and Imagination: A Brain-
Inspired Architecture for Cognitive Robotics. In AISB Workshop: Next
Generation Approaches to Machine Consciousness, pages 26-35, 2005.

R.G. Simmons. Structured control for autonomous robots. IEFEE
Transactions on Robotics and Automation, 10(1):34-43, 1994. ISSN
1042296X. doi: 10.1109/70.285583. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=285583.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087168
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087168
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1103278
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1103278
http://www.intechopen.com/journals/international_journal_of_advanced_robotic_systems/communication_patterns_as_key_towards_component-based_robotics
http://www.intechopen.com/journals/international_journal_of_advanced_robotic_systems/communication_patterns_as_key_towards_component-based_robotics
http://www.intechopen.com/journals/international_journal_of_advanced_robotic_systems/communication_patterns_as_key_towards_component-based_robotics
http://pi.informatik.uni-siegen.de/stt/29_2/01_Fachgruppenberichte/SRE/07-quante.pdf
http://pi.informatik.uni-siegen.de/stt/29_2/01_Fachgruppenberichte/SRE/07-quante.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399375
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399375
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=285583
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=285583

BIBLIOGRAPHY 65

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Ruben Smits and Herman Bruyninckx. Composition of complex robot
applications via data flow integration. 2011 IEEFE International Con-
ference on Robotics and Automation, pages 5576-5580, May 2011.
doi: 10.1109/ICRA.2011.5979958. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5979958.

R SUN, E MERRILL, and T PETERSON. From implicit skills to
explicit knowledge: a bottom-up model of skill learning. Cogni-
tive Science, 25(2):203-244, April 2001. ISSN 03640213. doi: 10.
1016/50364-0213(01)00035-0. URL http://doi.wiley.com/10.1016/
S0364-0213(01)00035-0.

William M. Trochim. The Research Methods Knowledge Base, 2nd
Edition, 2006. URL http://www.socialresearchmethods.net/kb/.

David Vernon, Giorgio Metta, and Giulio Sandini. A survey of ar-
tificial cognitive systems: Implications for the autonomous develop-
ment of mental capabilities in computational agents. IEEE Transac-
tions on Fvolutionary Computation, 11(2):151-180, 2007. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4141064.

Richard Volpe, I. Nesnas, Tara Estlin, D. Mutz, Richard Petras,
and H. Das. The CLARAty architecture for robotic autonomy. In
2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542),
volume 1, pages 1/121-1/132. IEEE, 2001. ISBN 0-7803-6599-2.
doi: 10.1109/AER0.2001.931701. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=931701.

Peter Wallin and Jakob Axelsson. A Case Study of Issues Related
to Automotive E/E System Architecture Development. In 15th
Annual IEEE International Conference and Workshop on the Engi-
neering of Computer Based Systems (ecbs 2008), pages 87-95. IEEE,
March 2008. ISBN 978-0-7695-3141-0. doi: 10.1109/ECBS.2008.46.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
4492390http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm7arnumber=4492390.

Christopher Watkins. Integrated Modular Avionics: Manag-
ing the Allocation of Shared Intersystem Resources. In 2006
ieee/aiaa 25TH Digital Avionics Systems Conference, pages 1-12.
IEEE, October 2006. ISBN 1-4244-0378-2. doi: 10.1109/DASC.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5979958
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5979958
http://doi.wiley.com/10.1016/S0364-0213(01)00035-0
http://doi.wiley.com/10.1016/S0364-0213(01)00035-0
http://www.socialresearchmethods.net/kb/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4141064
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4141064
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=931701
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=931701
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4492390 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4492390
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4492390 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4492390
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4492390 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4492390

66

[110]

[111]

[112]

BIBLIOGRAPHY

2006.313743. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4106349.

Christopher B Watkins and Randy Walter. Transitioning from feder-
ated avionics architectures to Integrated Modular Avionics. In 2007
IEEE/AIAA 26th Digital Avionics Systems Conference, pages 2.A.1-
1-2.A.1-10. IEEE, October 2007. ISBN 978-1-4244-1107-8. doi:
10.1109/DASC.2007.4391842. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4391842.

SR White and JE Hanson. An architectural approach to autonomic
computing. In International Conference on Autonomic Computing,
2004. ISBN 0769521142. URL http://ieeexplore.ieee.org/xpls/
abs_all. jsp?arnumber=1301340.

Ming Xiong, Jeff Parsons, and James Edmondson. Evaluat-
ing the performance of publish/subscribe platforms for informa-
tion management in distributed real-time and embedded systems.
2011. URL http://portals.omg.org/dds/sites/default/files/
Evaluating_Performance_Publish_Subscribe_Platforms.pdf.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4106349
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4106349
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4391842
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4391842
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1301340
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1301340
http://portals.omg.org/dds/sites/default/files/Evaluating_Performance_Publish_Subscribe_Platforms.pdf
http://portals.omg.org/dds/sites/default/files/Evaluating_Performance_Publish_Subscribe_Platforms.pdf

	Terminology
	Acknowledgments
	Contents
	Appended publications
	Introduction
	The big picture
	Thesis outline
	Architecting autonomous embedded systems
	Research scope and question
	Research methodology

	State of the Art
	Automotive
	Discussion

	Intelligent control and robotics architectures
	Intelligent control
	Cognitive architectures
	Real-time control architectures
	Discussion

	General embedded systems and software development
	Middleware and software development

	Automobiles vs robots: architectural considerations
	Positioning of this thesis work

	Contributions
	A reference architecture for cooperative driving
	 An approach to embedded systems autonomy

	Discussion
	Reflection on work done
	An approach to incremental system autonomy

	Future work and Conclusion
	Future work
	Conclusion

	Bibliography

