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1 Terminology

The following terms occur throughout the document

Architecture The definition of an architecture used in ANSI/IEEE Std 1471-2000 is:
”The fundamental organization of a system, embodied in its components, their
relationships to each other and the environment, and the principles governing its
design and evolution.”
This document, however, uses the TOGAF[1] sense of the term, which embraces
but does not strictly adhere to ANSI/IEEE Std 1471-2000 terminology. In TO-
GAF, ”architecture” has two meanings depending upon its contextual usage:
1. A formal description of a system, or a detailed plan of the system at component
level to guide its implementation
2. The structure of components, their inter-relationships, and the principles and
guidelines governing their design and evolution over time.

Software component A component is a basic unit of functionality which executes
one or more (real-time) programs in a single thread.[2]

Software framework is an abstraction in which software providing generic function-
ality can be selectively changed by user code, thus providing application spe-
cific software. It is a collection of software libraries providing a defined appli-
cation programming interface and is used to build the standard structure of an
application.[3, 4]

Middleware is computer software that connects software components or applications.
It is used most often to support complex, distributed applications.

Realtime toolkit is a part of the Orocos[5] software framework. It provides a C++
framework, or ”runtime”, targeting the implementation of (realtime and non-
realtime) control systems.

Ego vehicle is a fancy way of saying ”our” vehicle

Datalogging storing of data flowing within the system for purposes of future retrieval,
visualisation or processing

HMI stands for Human Machine Interface, and refers to the technologies that permit
interaction between a human being and a machine. This generally is in the form
of graphical displays and control panels.
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2 Introduction

2.1 What the project is about

The Scoop project was initiated in order to create a participating entry in the Grand
Cooperative Driving Challenge(GCDC)[6]. The GCDC is a situation where multiple
vehicles drive cooperatively in a platooning scenario. The terms ’cooperative driving’
and ’platooning scenario’ will now be explained, before proceeding further.

Cooperative Driving is a driving condition where vehicles can communicate with
other vehicles (V2V) and also with the surrounding road infrastructure (V2I).
This communication can take place over a variety of wireless media and can be
used for vehicle motion control, among other things.

Platooning scenario is one possible scenario in cooperative driving. In this scenario,
vehicles drive one after the other, where the first vehicle is denoted as the ’lead
vehicle’. The lead vehicle is generally driven manually. The rest of the vehicles
follow the lead vehicle autonomously. The lead vehicle and the following vehicles
together form a ’platoon’. It is useful in a rough way to think of a platoon of
vehicles as a ’road train’. A platoon on a road can split into multiple platoons,
merge with other platoons etc. The platoon must obey the local road laws, respect
speed limits, react appropriately to traffic lights and so on.

Cooperative driving and platooning scenarios have a variety of benefits for road traffic
and the environment. The benefits include reduced traffic congestion, lower emissions
and fuel consumption as well as safer driving.

The GCDC is organized by TNO of the Netherlands[7]. In the GCDC, teams from
all over Europe participate with their vehicles. TNO provides the lead vehicle and
the vehicles of the participating teams will be the following vehicles in a platooning
scenario. The lead vehicle may try to induce oscillations in the platoon by means of
erratic driving. The resulting effect on the platoon will be a function of behaviors of
each following team vehicle. TNO then uses a number of criteria to determine which
vehicle performs the best with respect to automated driving in a platoon. Detailed
rules of the competition can be found in the GCDC rules and technology document[16].

The GCDC is challenging because the platoon as a whole must function, despite
the fact that no vehicle has precise control over the motion of other vehicles in the
platoon. The vehicles exchange data continuously using standardized specifications,
but the control strategies and implementations of each participating team/vehicle are
different.

The first GCDC was held in May 2011 at Helmond, the Netherlands. One of the
participating teams was Scoop. Scoop was comprised of researchers and engineers from
KTH and Scania CV AB. The team vehicle was a Scania R730 series truck. This is
a state of the art commercial product from Scania, which was further modified with
functions to enable autonomous driving in a platoon.
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2.2 What this report is about

This report deals with the technical solution that was implemented for the GCDC
2011. Some reflections on the design process are also included. The goal of the report
is to make the user understand the technical solution and the motivations behind the
design choices made. Individual technologies are not descibed in depth, but adequate
references are provided where necessary.

Section 3 presents some technical characteristics of platooning applications, followed
by engineering design considerations for the component based architectures.

Section 4 describes the specific solution we implemented. It begins by listing and
motivating some preliminary decisions followed by a description of the implementa-
tion. It concludes by showing how the solution leads to a realization of the desired
functionality.

Section 5 elaborates on the specific topic of datalogging in component based ar-
chitectures. It describes what kind of data should be logged and some principles of
datalogging relevant to component based architectures.

Section 6 describes how the system was tested. Section 7 mentions some reflections
on the design process as well as the solution and concludes the report.

3 Design considerations

This chapter presents some design considerations that affect the specific solutions pre-
sented in later chapters. The intention is to set a context for describing the solutions
that follow.

3.1 Technical characteristics of platooning applications

Platooning applications inherit characteristics from the automotive domain. Some char-
acteristics of the automotive domain are discussed in [17, 20, 18, 19]. Additional char-
acteristics especially important for platooning applications are mentioned below

1. There is little, no or mostly unpredictable control over the behavior of other
vehicles in the platoon. The only certainty is the ability to control the ego vehicle,
and broadcast information about it. Despite this, it is the responsibility of all
platooning systems to maintain the integrity of the platoon.

2. The development of platooning systems is practically always a mixture of visual
programming methods (Simulink etc.) and hand coding. The architecture should
enable smooth integration of the artefacts produced by both methods.

3. A platooning system is made up of a mixture of tasks. Some tasks have hard
real-time constraints, some are soft realtime, while others are not generally time
critical.
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4. A platooning application is developed as an optional feature to an existing vehicle
platform. Therefore, the onus on the architect is two-fold

(a) The platooning system should conform to the existing architecture, its pos-
sibilities and limitations

(b) The platooning system should not dictate changes or otherwise impact the
existing system to the maximum extent possible

5. The design of a platooning system is significantly affected by the sensors used to
obtain a ”world-view”. For example, a system using a camera would differ from
a system using a radar, which in turn would be different from a system using a
bank of lasers. It is therefore important to have a flexible data fusion component,
yet keep the rest of the system invariant to its changes.

6. A platooning application mixes safety critical and non-safety related functions.
A strict awareness needs to be maintained of this fact when developing the ar-
chitecture, because the impact goes beyond obvious technical matters and affects
processes like certifications.

7. Platooning applications integrate domain expertise. Therefore, the architect needs
to have sufficient knowledge of all domain functions; mere knowledge of functional
and/or behavioral requirements is not sufficient to create the architecture.

8. Platooning applications involve an inherent safety paradox. Ideally, a system
should not depend on external input to assure its own safety. However, a pla-
tooning application must do so. It is a design challenge to make the system as safe
as possible, without making assumptions about the quality and trustworthiness
of incoming data.

9. A platooning application is closely related in concept to an autonomous system.
Therefore, the presence of a system ego is needed in some form or the other. In
other words, there must be a system component that knows what functions the
system-as-a-whole is supposed to perform, and how those functions are done by
the system.

10. A platooning application is characterized by distributed, hierarchical control. The
platooning controller takes decisions and creates setpoints for high-level motion
variables, like speed, acceleration etc. However, the actual regulation of these
variables occurs in controllers that are completely distinct from the platooning
controller

11. A key differentiator for a platooning system is the need to percieve the environ-
ment and form a world-view from fairly limited sensor input1. Therefore, it is

1as compared to the perception abilities of a human driver.
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necessary to have a lot of trust in sensor data (e.g.: There really is no car in front
of us.) However, the reality is that the sensors in use provide reliable data only
under a subset of circumstances that occur while driving in a platoon. Therefore,
redundancy, multiple sensors, fusion and above all, reasoning on received data is
an unavoidable part of a platooning system

12. In addition to the accuracy of input data, it is also necessary at all times to
maintain the accuracy of the data being broadcast from the platooning system,
because this is used by other vehicles in the platoon

13. The development, testing and verification activities for a platooning system are
entirely governed by the datalogging and visualization infrastructure. Although
not a part of the final product, good datalogging tools and frameworks are crucial
during the development phase. As such, the architecture must have native support
for datalogging.

14. Data, control and computation need to be handled separately within the archi-
tecture. A platooning system is a mix of time and event triggered control. The
specification and design of inter-component interfaces is driven primarily by data,
while the scheduling of the components and their priorities are driven primarily
by control and computation requirements

15. A platooning application involves heavy parameterization and the architecture
should support live calibration methods so that parameter values can be correctly
decided during live tests of the system

16. A platooning system needs a human machine interface (HMI) that can be used
to make the human driver aware of what the system is doing. Since the vehicle
already has an HMI, which is part of its existing architecture, decisions need to
be made on the HMI specification of the platooning application and whether it
can fit into the existing HMI scheme

17. The platooning system should ideally be able to determine which of its constituent
components are working properly and use that as a basis for system behavior.
Thus, it should be possible to gracefully degrade functionality based on the health
of monitored components

3.2 Engineering requirements for component based architec-

tures

When talking about embedded systems and software development, engineers often use
phrases like, ”This system is a joy to work with.” or ”Working with this code is like
kicking a dead whale down the beach.” Such statements indicate that there are certain
systems and implementations that are ’better’ for engineering work. Words like ’elegant
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design’, ’feels good’ creep in, without there being an objective set of metrics for what
they mean.

This section stems from the experiences of the authors in designing embedded sys-
tems. The authors feel that if the requirements listed below are fulfilled, the system will
be more ’pleasurable’ to work with, than if these requirements are not fulfilled. These
requirements may or may not have a direct relation to customer requirements or other
requirements of the product, but they enable smoother and more satisfying work during
system development, testing and debugging. Some reasoning is given for stating each
requirement. This reasoning is not comprehensive. There may be many more reasons
for a requirement, than stated here.

1. The system should be implementable with existing tools.
Most experienced developers already have a ’bag of favorite tools and tricks’ which
they try to apply to the new systems they are developing. It is often far easier to
design an architecture keeping in mind the capabilities and limitations of the tools
that may potentially be used for the project. Contrast this approach where the
architecture is designed in ’free space’, whereupon it is often realized during the
implementation that no single (or multiple but compatible) tools can get the job
done. This results in quickbrewed solutions in place of tested and well-maintained
ones for problems that could have been solved using the latter. Good developers
like to reuse trusted, ’has worked before’ solutions and having to use something
else just because the architect ’didn’t think of it’ is a cause of frustration.

2. There should be flexibility throughout the Design and Development process.
Once the rough skeleton of the architecture has been decided, it is time to start
with the implementation without waiting (or even attempting) to refining it down
to the finest detail. During the D&D of most new projects, all information about
all project aspects is not (and can not) be known in advance. Therefore, attempt-
ing to refine the architecture prior to learning the lessons that are learned during
development is a recipe for rework. Flexibility implies the ability to refine the
architecture as it is developed, using the lessons learned during development.

3. Evolvability must be a deliberate design decision.
Often, the customer does know tacitly what is needed, but the specification may
not be comprehensive enough. If the system is closely engineered to the speci-
fication, then addition of new features that the customer has ’just realized that
he wants’ can be a problem. If the architecture is not designed for evolvability,
this either results in ’quick hacks’ to ’get this specific task done’ or a costly and
time consuming redesign. The latter will then be susceptible to the same problem
and the former method of using quick and dirty hacks often gets repeated till
the system becomes an unmanageable mess that has to be redesigned. Therefore,
the architect can save trouble all around, if evolvability has been built into the
system, for some defined boundaries of ’evolvability’. This is especially true for
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products characterized by the use of common components and platforms, which
are reused in different product variants.

4. Dynamic architecture changes.
This refers to the possibility of changing the inter-component connections to give
rise to new system behaviors. Such possibilites are enabled by making sure that
the components in the architecture are self-contained. There should be minimum
dependence on other components and it should never be necessary for a compo-
nent to know the inner working of another component. In the extreme case, a
component need not know where its input data comes from and who consumes
its output data. When components are decoupled to a great extent, the system
developers are free to throw a bunch of components together and decide how
they should be strung together to generate different system behaviors. The use of
supervisory components then enables dynamic changes to component assemblies
leading to adaptable, robust systems.

5. It should be easy to swap algorithms.
The most optimal algorithm for a given task may be a topic of research while
the architecture is being designed. Alternatively as the system is deployed, newer
algorithms may come to the fore. Sometimes, it is necessary to evaluate differing
algorithms keeping the rest of the system constant. It is therefore a good idea to
separate the algorithm from the architecture. Providing well defined ’slots’ to run
algorithms provides a way to execute/test various algorithms. This is consistent
with the principles of flexibility and evolvability.

6. Ability to be implemented in existing frameworks like AUTOSAR
This isn’t really a strict requirement, but is a ’nice-to-have’ property of component
based architectures for automotive solutions. AUTOSAR is rapidly becoming the
upcoming standard for implementing automotive software and it is a good thing if
the architecture can be implemented in AUTOSAR without extensive reworking.

7. Ability of real-time interaction with the architecture
Real-time interaction is the ability to start, stop, examine and modify components
while the system is executing. This not only saves time during system tuning (by
avoiding the stop system, change values, recompile, re-execute cycle), but also
provides an insight into the system operation as it executes. In a sense, such a
real-time interaction is ’debugging on steroids’ and can be used to quickly isolate
problems and causes of erratic system behavior.

8. Ability to include autogenerated components
There are many parts of a modern embedded system that may not be hand-
coded. For example, control components are often designed as block diagrams in
Simulink. However, if these parts can be included in the framework with further
manual intervention, the system development efforts are reduced.
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9. Implementation documentation autogeneration
The actual source code of an executing system is its ultimate reference and doc-
umentation. Architectural description documents are very useful to understand
system design concepts, however, these documents often get out-of-sync with the
current implementation for a variety of reasons. Additionally, certain finer im-
plementation level detail may not be documented in any architecture description.
Therefore, it is advantageous to be able to generate some form of documentation
from the actual source code of the implementation. The tools and frameworks
used for the implementation should support the creation of such automated doc-
umentation.

10. Diagnostic/Monitoring services
The architecture should permit the examination of the health and status of each
component. In case of reported or suspected problems with a component, there
should be means to run diagnostics to assess the extent of the problem and reason
about its consequences. Having this facility enables the design of robust archi-
tectures, with the possibility of graceful degradation in performance, when errors
occur.

11. Ability to satisfy timing constraints
In case any of the components need to run time critical tasks, the design should not
be limited because the component framework does not support realtime operation.
Therefore, it should be possible for the architectural framework to mix together
realtime and non-realtime components, satisfying the timing constraints wherever
applicable.

12. Platform services-scheduling, memory management etc.
Either the component framework or the underlying operating system should take
care of basic services like scheduling, memory management etc. This leaves the
architect free to focus purely on the component based design within the limits of
the framework.

13. Ability to reuse existing code
Some frameworks are so specialized that they no longer support the possibility of
using third party or legacy code. When implementing a new system, it beneficial
to reuse as much existing code as possible. Doing so not only conserves time
and effort, but also provides some defence against bugs, since the reviews and
maintainence of third party code, like software libraries, is often superior to what
can be managed by the project team.

14. Minimum impact on existing infrastructure
The introduction of a new framework should be as minimally intrusive into the
existing infrastructure as possible. This makes it possible to gradually evolve the
architecture of the entire system. Designers of established products often frown
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upon large changes and having a minimally invasive method to add functionality
makes for a safer upgrade path for existing products.

4 Our specific solution

This section describes the specific solution we implemented. The description begins
with some preliminary decisions based on constraints, developer preferences and long
term interests.

The reader will notice how the theoretically large set of choices is actually quite
narrow in practice. This is because one choice often constrains another. For example,
when you choose to use a certain readily available framework, you must often use the
programming language the framework was written in.

4.1 Preliminary decisions

1. The software platform of choice should be capable of supporting real-time opera-
tion, should that prove necessary. It should be possible to use existing tools and
software libraries to prevent re-inventing the wheel unless absolutely necessary.
Finally, the entire software ecosystem should preferable be open-source and freely
modifiable, because this leads to a great many benefits while preventing vendor
lock-in[8]. Based on these considerations, GNU/Linux is the only mature candi-
date for consideration. It has the widest choice of pre-existing software needed
to support the task at hand. The 802.11p protocol driver[15] is currently only
available for the Linux kernel. GNU/Linux was also the preferred choice of the
lead developers, for reasons of familiarity and ideology.

2. The architecture should be component based, with good separation of concerns
between the components. (The concept of a software component is extensively
described in subsection 4.2.4.) The system behavior would result from interac-
tion among the components. To support this design, there was a need for a
mature component based framework that enables easy creation of components
and provides a way for the components to interact with each other. Furthemore,
the component based framework should be able to take advantage of the under-
lying operating system’s realtime capabilities and provide realtime execution of
the components and inter-component communication. The framework should be
cross-platform capable, to facilitate easy migration of the solution to other oper-
ating systems in future, should it prove necessary. Based on these considerations,
the OROCOS framework[5, 21] was selected, since it is the only open-source frame-
work that fulfils the requirements. Orocos has been successfully used in similar
projects in the past and has an active user community and support base.

3. Most realtime code for Linux is written either in C or C++. The orocos frame-
work is coded in C++ and orocos based applications must be written in C++.
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Therefore, C++ naturally falls out as the programming language of choice.

4. The Boost programming libraries[9] are cross-platform, peer reviewed and highly
regarded among C++ programmers. Boost provides many (if not most) commonly
used facilities required by a complex C++ program and does so with exceptionally
high quality. Therefore, Boost must be used wherever it can. Given the extraor-
dinary support provided by Boost, ’C++ with Boost’ turns into a self-reinforcing
and justifying combination.

5. Data exchanged among components should be in the form of opaque structures
with accessors. An opaque structure is a structure whose internal reprsentation
is not known to the user, and the data in the structure is extracted by means
of dedicated functions, called accessors. This enables changing the way data is
stored without changing all the code that accesses the data. It also enables actions
like serializing the transferred data (more on this in section 5) without being
aware of the actual data content and organization. Google protobufs[10] or boost
serialization library[11] provide convenient classes for creating seriazable objects.
Furthermore, the classes are extensible from a base class, enabling creation of
multiple class types that share common access methods.

6. It should be possible to log all data exchanged between components. Additional
(perhaps temporary) data generated by a component during operation, including
status and error messages should also be logged. The data logging mechanism
should not significantly affect the system performance, and the system should
be capable of running without the logging mechanism. Furthermore, it should be
possible to transmit all data to be logged to another system, where it can be saved,
replayed and analyzed. It should be easy to add/remove data types and struc-
tures to the logs. Based on these requirements, dedicated datalogging channels
are created from each component to a datalogging component. The datalogging
component then uses the google protobuf object methods to serialize the data
over a TCP/IP socket. A number of small ’consumer’ programs would be written
for accessing the log data and storing/visualizing/processing it as necessary.

7. The developed architecture should be easily transferrable to an AUTOSAR im-
plementation. This is a requirement because once the system goes beyond the
prototyping phase, it tends to be implemented in AUTOSAR, which is the up-
coming implementation standard in the automotive industry. It is very inefficient
if the prototyped system needs to undergo an architectural change before it can
be implemented ’for real’.

8. The Human Machine Interface (HMI) to the system should be completely inde-
pendent in design and execution from the core system. It should not affect the
execution of the core system in any way. As long as the core system provides the
information sufficient for an HMI, the actual HMI implementation can be done
independently on a distinct hardware/software setup. Based on this requirement,
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an HMI program would be created that scans the log data from the datalogger
component’s TCP/IP stream and displays it to the driver. The program would
be run on a different computer.

9. The system should be designed and coded in a ’realtime friendly’ manner. Re-
altime friendly means not having to change the design or the implemented code,
should the system be moved to a real-time platform. This means that the de-
veloped solution can initially be tested on a non-realtime kernel and then on a
realtime kernel if necessary. Thus, merely booting with a different kernel and/or
recompiling should be all it takes for transforming between realtime and non-
realtime operation. Examples of realtime friendly coding are: no memory alloca-
tion in dynamic code, usage of non-blocking functions only and so on.

10. The developed software system should use the services of existing system daemons
as much as possible, unless overriding technical reasons against their usage are
present. There is a gps daemon[12] that can already connect to different types of
gps units and serve their data. Therefore, the gps daemon must be used instead of
writing code to communicate to the device directly. The Network Time Protocol
(NTP) daemon[13] exists to synchronize the system clock with an external source,
therefore it must be used to synchronize the system clock with the gps, instead of
writing code to do that. The same argument goes for usage of the calm daemon
for wireless communication.

11. The control part of the system must be executed in an ECU. This is because the
control system will be designed in Simulink and established methods exist to trans-
late the Simulink design into a real-world executing system. Re-implementing the
Simulink design manually in C++ simply because the rest of the system is in C++
doesn’t make sense when ECUs and associated tool-chains are readily available.
This decision splits the system hardware into two: A part that executes Linux,
and another that executes the Simulink control models.

12. Since CAN is the established communication protocol for an ECU, the communi-
cation between the Linux computer and ECU will be over CAN.

13. Finally, the cooperative driving solution should make minimum modifications to
the existing truck system. Preferably, the solution should be ’plug-and-play’,
taking over certain system functions when it is plugged in.

These preliminary decisions impose several tight constraints on the system design. This
is good because they narrow down the possible design space, enabling us to move on to
the next iteration of the design.

4.2 System architecture

In this description of the system architecture, we first look at the top level functions
that need to be realized. This is followed by a system overview for realizing these
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functions. Finally, we describe the specific implementation of the architecture.

4.2.1 Top level functions
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Figure 1: Function Structuring

The five main functions needed for a platooning application2, as shown in figure 1
are

1. Information gathering

2. Estimation

3. Information broadcast

4. Control

5. Supervision

The information gathering function has the responsibility of gathering data about the
ego vehicle and the environment. The environment consists at least of other vehicles
in the vicinity and road objects like speed signs, traffic lights, lane markings etc. The
information can be gathered by different or multiple means. For example, information
about the ego vehicle can be gathered by reading the vehicle’s CAN bus and via a GPS
device. Information about other vehicles can be gathered from wireless broadcasts or

2Just to be clear, these are the additional functions needed for platooning, and assume the existence
of a vehicle platform providing basic sensing, control, HMI etc.
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local sensors like radar. Information about road objects can be gathered from wireless
broadcasts or local sensors like cameras. The information gathering component is thus
a conceptual function that provides all the raw data necessary for operation, regardless
of the nature and source of the data.

The raw data provided by the information gathering function has to be filtered
through the estimation function. The estimation function is needed for multiple reasons.
The raw data provided by a sensor cannot be trusted blindly and used as a control input.
The data must be ’sanitized’ before use. Sanitaization means that some commonsense
checks have to be made to ensure that values received are not improbable. This includes
elimination of outliers from the signals. For example if the position of the vehicle ahead
suddenly shifts by a few kilometers in a matter of milliseconds, then there is an obvious
flaw in the readings. Some pieces of information can come from multiple sources. An
example is the vehicle speed signal, which can come from the vehicle’s internal CAN
bus and also from a GPS receiver. The values from multiple sources must be fused
together to provide a single value stream with a high degree of confidence. Sometimes,
the signal from a data source may be briefly lost. For example, a GPS device may not
provide position information when the vehicle is in a tunnel or below a bridge, and there
is no line of sight to overhead satellites. Under such situations, the estimation function
must provide extrapolated information as long as possible. The estimation function can
also calculate values of variables which are not directly observeable. The output of the
estimation function would be continuously updated state vectors representing the state
of the ego vehicle, the vehicles in the environment and the road objects.

A vehicle participating in a cooperative driving scenario must broadcast certain
information about itself. This information is collected from various parts within the
system and broadcast (generally over wireless media) at different frequencies3. The
broadcasts may also contain control requests, for example, requests to join existing
platoons. The information broadcast function is the single place from which information
goes out of the vehicle.

The control function is directly responsible for vehicle motion. Gathered and pro-
cessed data is fed to this function which decides and regulates vehicle speed, acceleration
and other motion parameters.

The supervisor function is responsible for the overall working of the system. It
performs mode management, diagnostic monitoring and coordinates the information
flow within the system. Conceptually, it is above all other functions in the hierarchy.
The supervisor is also responsible for graceful system degradation in case of problems.

4.2.2 System overview

This section presents a very high-level logical view of the architecture. Refer figure 2.
The ECU represents the control function. The reason to show it separately is to

emphasize the fact that in function, implementation and operation, it is separate from

3Frequencies here means at different intervals, not the radio frequency of transmission.
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Figure 2: System overview

the rest of the system. It reads a certain set of data as input and makes certain actuation
requests as output.

The Brake Control, Engine Management and Cruise Control are the ’actuators’
influenced by the ECU. These are standard vehicle functions provided by the manu-
facturer for the vehicle’s motion control. The ECU uses them to realize desired vehicle
trajectories.

Finally, the rest of the functions are grouped together for execution on a generic
computer. This is because their implementation is foreseen as individual components
in a component based software framework.

The generic computer and ECU are connected to the vehicle’s CAN bus, on which
the ’actuators’ are also present. There is a dedicated CAN bus connecting the generic
computer and the ECU to handle the high bandwith communication between them.

The GPS device as well as wireless routers are connected to the generic computer.

4.2.3 Implementation

Figure 3 shows an implementation view of the architecture. The topmost layer shows the
top level functions that the architecture should realize. These functions are described
in section 4.2.1.

The next layer is the software layer, which shows the developed software components
and their contribution to the top level functions. A top level function may be realized
using more than one software component. For example, the Information Gathering func-
tion is realized using a combination of the GPS Manager, CAN Manager and Wireless
components. A software component may contribute to the realization of more than one
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Figure 3: Implementation

top level function. For example, the wireless component contributes to the realization of
the Information Gathering as well as the Information Broadcast functions. There also
exist software components that do not directly contribute to the realization of top level
functions. An example is the Logger component. The logger is useful for debugging
the system and exists purely at the software level, in this architecture. The software
components are executed by a realtime operating system. The operating system in this
case is GNU/Linux, running the Xenomai realtime framework[14] for the Linux ker-
nel. A detailed description of the software component concept is given in section 4.2.4.
The software implementation of the Control function is similar in principle to other
components in the Software layer. However, it differs in implementation. The control
component is designed and implemented in Simulink and the software code it executes
is autogenerated from within Simulink. Thus, there is no traditional hand-coding of
the control function.

The lowermost layer is the hardware layer, which executes the contents of the soft-
ware layer. This hardware layer is partitioned into two. The ECU is a physically distinct
piece of hardware which executes the control software. The other piece of hardware is
a generic computer running the GNU/Linux operating system.

4.2.4 Concept of a software component

This subsection explains the concept of a software component, as it applies to this
architecture. It begins by describing the software environment which the component is
a part of, and then elaborates on the structure of the component itself.
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Figure 4: Environment of a software component(source: Orocos component builders manual[2])

Refer to figure 4. At the bottom layer, you have the operating system. On top of
the operating system exists an operating system abstraction layer. This abstraction
layer presents a generic interface to the services of the operating system to the layers
above it. In essence, it makes the implementation of the upper layers independent of the
actual operating system being used. In order to use a different operating system, only
the operating system abstraction layer needs to be changed; not the layers above it.
Such abstraction layers are a common and desirable feature of software architectures.
The abstraction layer in this architecture is termed the RealTime Toolkit. This nomen-
clature originates from Orocos[5], the software framework chosen for the architecture’s
implementation.

On top of the realtime toolkit are placed the software components. A software
component may be thought of as a ’unit of functionality’. The component executes
periodically or aperiodically and does some specified tasks every time it executes. For
example, a component for acquiring GPS data may periodically execute code that
reads data from a GPS device, and send this data to another component that needs
it. A component can execute complex state machines and have mutable properties4,
attributes and other meta information. Components can also communicate with each
other using a variety of mechanisms.

A component based software framework allows you to create components and spec-
ify how to execute them. It also allows you to specify the connections between the
components you have created and how they communicate with each other. Sophisti-
cated component based frameworks also provide the operating system abstraction layer
suitable for running their components. The framework chosen for implementing our
architecture, Orocos, provides such an abstraction layer. In Orocos, one component
usually maps to a single (RT)OS thread. However, it is also possible to create so called
Orocos ’Activities’ which can be implemented in their own threads. Detailed descrip-
tion of the mappings between components and operating system primitives are given in
the Orocos component builder’s manual[2].

4A mutable property is a property that can be changed during runtime.
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The desired behavior of a component based architecture emerges from the concurrent
execution of multiple components and their interactions.

Now let us look at the structure of a software component (figure 5) used in our
architecture. The structure is dictated by the OROCOS, the framework chosen for
implementing the components.

Figure 5: Structure of a component(source: Orocos component builders manual[2])

A component can execute state machines and/or code that is executed everytime
the component is invoked. The invocation occurs periodically for a periodic compo-
nent, or after some event based trigger for an aperiodic component. The nature of the
component i.e. whether it is periodic or event triggered, is specified either in an Orocos
configuration file or in the source code itself. Each component has functions that are
executed on component startup, shutdown and in case of errors. The contents of these
functions are user defined, as is the code that runs on each invocation. Every component
has a ’configuration interface’ which can be used to edit the metadata of the compo-
nent. Metadata includes component properties and attributes. Properties have the
advantage of being writable to an XML format, hence can store ’persistent’ state. For
example, a control parameter. Attributes are lightweight values which can be read and
written during run-time. In addition to the configuration interface, two more interfaces
are present: the execution interface and the dataflow ports. The execution interface
provides means to control the component’s execution and invoke functionality/services
offered by a component from another component. Through this interface, the com-
ponent may be started, stopped or its services may be invoked either synchronously,
asynchronously or both ways from within another component. The dataflow ports allow
transfer of data from one component to another. A port may be a buffered port or an
unbuffered port and is meant either for reading data from, or writing data to. The read
port of a component is generally connected to the write port of another component and
the data types flowing through such connected ports must be the same. A detailed
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description of the component interfaces is beyond the scope of this document. The
interested reader is referred to [2].

4.2.5 Emergence of system behavior

Figure 6: Dataflow depicted using SysML internal block diagram

A big portion of our architecture consists of a set of connected components within
the generic computer, which exchange data. Let us use on this set to commence the
understanding of system behavior. Refer to figure 6.

All the components in the generic computer are periodic. In every execution period,
a component wakes up, does a specific task and goes back to sleep. However, before
going back to sleep, a component services requests that may have been made by other
components while it was asleep. The components behave as follows, in every execution
cycle:

1. The GPS, CAN and Wireless components read data from their respective infor-
mation sources and send it to the estimator. The CAN component reads data
from the ECU as well as the vehicle CAN bus.

2. The Estimator uses its input data to update state vectors for the ego vehicle,
surrounding vehicles and road objects. This information is then sent to the CAN
component.
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3. The CAN component forwards the estimator information to the Control compo-
nent in the ECU.

4. The Control uses the information to enter/stay in an appropriate control strategy
and influences the vehicle actuators. Information about the ECU actions is sent
back to the CAN component.

5. The Supervisor component is responsible for system initialization, monitoring the
status of other components, rerouting data-flows in case of component malfunc-
tions and system level error management. It maintains the operational state of
the overall system.

6. The Wireless component also periodically reads data from the estimator and
broadcasts it over the wireless interface.

7. All components send logging data to the Logger component which periodically
serializes it through a TCP socket to a separate computer. This separate computer
logs the data to disk and also extracts relevant data and presents on a graphical
interface.

Now let us see how this process works in a typical scenario. Assume that the vehicle
is standing at a red light, and should start moving when it turns green. The following
sequence of events takes place

1. The GPS reports current vehicle coordinates to the estimator

2. Information about the position and state of the traffic light is obtained by the
wireless component and sent to the Estimator

3. The Estimator calculates the distance to the traffic light, the color and the vehicle
position and sends this information to the Control via the CAN component

4. The Control component continuously monitors this information and keeps the
brakes engaged while the traffic light directly ahead is red and the vehicle is
within a threshold distance to the light

5. When the Control component receives information that the traffic light has turned
green, it disengages the brakes and starts accelerating the vehicle forward

5 Datalogging in component based architectures

Data generated by or flowing through a computer based system often needs to be logged.
The logged data is an ’audit trail’ for determining what is/was going on in the system
at any given time. Additionally, logging data provides an insight into the system’s
operation which is useful for debugging the system during its development. A part of
the data being logged may also be useful for the purposes of Human Machine Interaction
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(HMI) if it can be displayed to the operator in real-time. For these and other reasons,
datalogging is an interesting problem within systems development in general. In this
section we look at some principles of datalogging in component based, real-time systems
and describe a datalogging solution that was employed within the Scoop project.

5.1 What data should be logged

This section describes the classification of data to be logged, as applicable to the Scoop
architecture.

Data in a component based framework may be divided into data that is transferred
from one component to another and data that is internal to a component and need not
be transferred to other components. The bulk of the data is often numbers. Sensor
measurements, calculated values, state information etc. These numbers can be plotted
as time series data during analysis, or in a live display. Additionally, there may be
text data that needs to be logged. This is the case of error messages, warnings, status
reports, HMI messages etc. Often, text messages include a large amount of numeric
data, like debug information strings. Text messages though, are not generally plotted
continuously as time series data and need different handling mechanisms than purely
numeric data. Furthermore, it is a common practice to assign ’log levels’ to messages.
A log level may be used to indicate levels of verbosity, severity etc. Log levels can
be enabled/disabled, such that only messages belonging to the enabled log levels are
logged.

5.2 Principles of datalogging

This section describes the principles of datalogging followed by the Scoop framework.

1. All the data to be logged can not be decided during the first iteration of the
design. The logging infrastructure must make it trivial to add new data to be
logged.

2. The data logging component(s) are non-realtime, but they must exist in harmony
with other real-time components. Harmony means that the dataloggers should
not adversely affect the operation of realtime components. Data loggers are con-
sidered non-realtime because they write the data to physical storage media and
ensuring realtime performance for the associated input/output processes is tech-
nically difficult, and not worth achieving if the architecture can accommodate
non-realtime datalogging.

3. All components should be capable of operation regardless of the state of the
logging infrastructure. This implies that a complete breakdown of the logging
mechanisms should not affect the functioning of components.

4. The components should be able to send the log data in ’fire and forget’ mode.
The sending component should not care about or be affected by a failure to send
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data to the logging mechanism, but failure to obtain log data must be detectable
at the logger end.

5. All log data should be timestamped to identify the time of its origin within the
framework. The sender of the data must be clearly identifiable.

6. The logging system should not have to be aware of the data it is logging, its
content, structure, or origin, except for a minimum interface for operations on the
data (serialize/deserialize).

7. If a component is sending data to another component, it should not have to
repackage the data in a different manner merely in order to log it. Thus, the
data objects sent to other components must be accepted by the logger without
modification

8. The data being logged must be opaque and extensible. Opaque means that it
should not be necessary for the framework to have a knowledge of the data struc-
tures involved. Extensible means that the data structures used by a component
for log data must be easily extensible to accommodate more (or less) data.

9. It should be possible to serialize the log data out of the system via a network
socket, so that the task on analysis and display of the data can be carried out on
a separate computer, if necessary.

5.3 Datalogger implementation

To understand the implementation of the data logging mechanism, first take a look at
figure 7.

The datalogger component is a non-realtime component, which is connected to all
other components by means of buffered ’many-to-one’ data ports. There are three data
ports in this design. One for purely numeric data and the other two for text data.
The ports for the text data are respectively for HMI related messages (information
that needs to reach the driver as soon as possible) and status information, including
errors and warnings. The usage of two distinct ports for text messages is purely for
convenience in implementation, and the two ports may be combined into one from a
theoretical viewpoint.

Each component pushes its log data into the buffered port connected to the data-
logger and this data is popped by the datalogger component. If the buffer is full, the
pushing of data to the port fails silently. The datalogger can check the size of the port
during each pop operation and raise an alarm if the buffer is full. Thus the design
satisfies the principle that the writes fail silently, while the failure can be detected at
the read end by the datalogger.

The datalogger is a periodic component that pops data from the buffer ports during
each execution cycle. Ideally, the entire data is popped, but it is possible to preempt the
pop operation at any time and resume it during the next execution cycle. The popped
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Figure 7: Datalogging

data is then serialized out of a TCP socket by the logger in a low priority, asynchronous
thread.

The actual code for transferring data to the datalogger (via the buffer ports) is
implemented in a single header file, with templated C++ logging functions. The imple-
mentation of each component includes this header file, thus preventing reimplementa-
tion of the same code in all components, as well as guaranteeing a uniform interface to
the datalogger. The logging functions also insert metadata like timestamps and sending
component into the log data.

The data to be logged is transferred through the dataports in the form of google
protobuf objects5[10]. Using google protobufs gives the following benefits

1. The data object has the same ’signature’ (data type), regardless of actual content,
since all google protobufs are derived from the same base class, which can be used
as the object type. Thus, as far as the datalogger is concerned, it is receiving
protobuf objects, while the sending components may send any derived object.

2. A google protobuf object is arbitrarily extensible with new data

3. The protobuf object contains methods that are suitable for (de)serializing the
data it contains. The datalogger component can call these methods of the received

5A google protobuf is an implementation of a data object that contains methods to (de)serialize its
datacontent.
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object and thus serialize the data, without knowing any further details about the
data. At the receiving end, the serialized data can be deserialized to recreate
the protobuf objects using provided library functions. This solves the problem of
serialization, transmission and deserialization across different computers.

4. The framework already uses protobuf objects to exchange data between compo-
nents. These same objects can be sent to the datalogger without any modification.

During each execution cycle, the datalogger empties the buffer ports and calls the serial-
ize methods of all objects popped from the dataports. The serialize method transforms
the object to a stream of binary data. This datastream is then sent out of a TCP socket
through an asynchronous thread. The datastreams are buffered in the datalogger to
ensure that their transmission is immune to preemption of the transmitting thread.

The stream of log data objects is received on another computer at the other end of
the TCP socket. There, the data may be filtered, logged and/or sent to a HMI. This
processing of the log data is on a separate computing node and does not affect the
realtime component based architecture in any way.

Some more text about the following may be added if a publication is to be made out
of datalogging alone

• realtime components send to non-realtime logger. An option is to use distributed
middleware like CORBA and directly call logging functions with datastructures
to be logged as argument. But even in this case, the packaging of data is vital to
avoid excess overloading of logging function definitions. Ideal is to have a single
opaque data object that can be used for all types of data. If the framework allows
it, one can embed executables inside the object which can manipulate the objects
data. For example, have a serialize function.

• How to log the data? what formats? it depends on how you plan to analyze it.
Generally used to plot 2D graphs. However, scientific analysis possible. There
are tools like ROOT (from CERN) and qtiplot

6 Testing the system

Testing the system is generally done by following a prepared set of test cases. However,
in the Scoop project, an applicable set of test cases was not available at the time testing
was initiated. Therefore, the testing methodology of Scoop followed a logical approach
from a technical perspective. The approach consisted of the following steps:

1. First the framework facilities were validated. The framework claimed to offer a
set of facilities like component creation, execution of state machines within the
components, the ability of synchronous and asynchronous communiciation among
the components and the ability to transfer data among the components using
buffered and unbuffered ports. All these facilities were tested with the help of
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dummy code. Doing so gave the high level of confidence needed in the framework
and also led to a better understanding of some of the framework behavior that
later proved vital. For example, some initial assumptions regarding the Orocos
asynchronous communication proved invalid, leading to a breakdown of the dat-
alogging system under heavy system load. Once the communication system was
better understood by testing it out using small, dummy examples, the datalogging
system was redesigned and performed satisfactorily.

2. The daemons and external libraries that would be used in the system were then
tested in scenarios similar to those that would occur during normal and abnormal
conditions within the system. The gps daemon was made to communicate with
the gps device at 10Hz and 100Hz. It was verified that the daemon as well as
libraries that would bring the daemon data into the system could handle the
resulting data rates. Then the ntp daemon was then tested to verify that it could
synchronize the system clock with the gps signal. The calm daemon that handled
the wireless communciation was then tested under various data rates and loads to
determine the delays and packet losses that would occur. The CAN libraries were
tested to make sure that they could handle the comunication between the vehicle
CAN bus and the dedicated CAN bus to the ECU. Careful notes were made
of the results of these tests and it was ensured that the concerned developers
had a good understanding of how the parts under their responsibility worked.
Doing these tests proved beneficial because several unexpected behaviors of third
party code came to light. For example, it was found that the send() function of
the CAN driver took a non-deterministic amount of time. This disrupted CAN
communications completely until a clever workaround was created. (The vendor
of the library, when contacted, was as confused as we were).

3. Once the framework and supporting daemons and libraries were verified working,
it was time to start testing the system implementation. To do this, the first step
was the testing of the datalogging framework. Log messages were sent from all
components to the datalogger component and it was verified that that the logger
properly sent the messages out of the system. The messages were reconstructed
on another computer and the tools for visualizing and analyzing the data were
tested. Only after it was verified that the logged data could be properly replayed
and analyzed, did the rest of the system tests start.

4. Once the datalogger was verified working, the input/output (i/o) components
were tested. I/O components are the components responsible for getting data
into or out of the system. The GPS, CAN and Wireless are the i/o components
in our design. It was verified that these components could reliably get and send
data as per the specification. During this phase, the i/o blocks of the Simulink
models running inside the ECU were also verified. Once this is done, then there is
a degree of confidence that data reception and transmission is happening properly
and it is time to focus on the components that consume the data.
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5. The ’consuming’ component on the general purpose computer is the Estimator.
This was the next component to be tested. Initially it was verified that the state
estimation of the Ego vehicle was happening properly. Then the same system was
deployed on multiple real vehicles (so that multiple vehicles were transmitting
reliable ego data). The next step was to test the estimation of state vectors of
surrounding vehicles, based on the data they were transmitting. The final step in
testing the Estimator was the verification of the world state vector. This includes
variables like the current speed limit and the state and location of traffic lights.

6. After the Estimator is verified, it was time to focus on the ECU and control algo-
rithms. At this point, it was verified that the rest of the system was functioning
as per design and the ECU need be the only object of focus. Testing of the ECU
involves testing the ability to form a platoon and control the longitudinal vehicle
motion based on the data received from other vehicles in the platoon. It also
includes testing the functions of stopping at red lights, taking off at green lights
and respecting the speed limits.

7. At this stage, all individual components of the system, as well as their integration
was verfied working. It was time to test the Supervisor component to make
sure that it could start and stop the other components, monitor their health and
shutdown the system cleanly when necessary.

8. Once all the tests described above are done, then a system FMEA took place.
During this FMEA, possible failure modes, their effects and probability of occur-
rences were discussed by the project team. The results of the FMEA were then
gradually incorporated by making incremental changes to the design and followed
up by relevant tests.

7 Conclusions and reflections

The Scoop project had fairly narrow goals, within the broader context of cooperative
driving (which in itself is a narrow area within the broader context of Intelligent Trans-
port Systems). As such, the architecture designed to fulfil its goals was not as broad
and all-enveloping as generic ITS architectures. However, it did its job extremely well.
During the week long GCDC challenge, the system did not hit a single architectural
limitation, despite needing several modifications due to last minute rule changes. Nei-
ther did the architecture ever fail to deliver during the challenge. In fact, once the
architecture was in place, it could safely be ignored and the development focused on
the core algorithms.

The architecture of a system reflects not only the technical constraints it is designed
under, but also the skills, capabilities and choices of its designers and implementers.
The architecture of the Scoop project was initiated with a heavy emphasis on operating
systems and programming. While this is a valid approach, it will quickly disintegrate if
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the development team lacks a solid, practical understanding of operating systems and
programming. An alternative approach is to emphasize on model driven development
and code generation tools. For example, it is possible to develop a lot of functionality
is Simulink and simply use industrial tools to execute the Simulink models on micro-
controllers. This approach does not require detailed operating system or low level
programming knowledge, but the gain comes at the cost of limited flexibility both
in the development process, as well as in the solutions achieved. The ideal lies in
combining/balancing the two approaches, utilizing the strengths of each approach where
appropriate. Ultimately however, the achieved balance will depend on human factors,
rather than strictly technical ones.

Finally, it should be noted that a good architecture is a necessary but not sufficient
condition for the success of a project. Almost equally important is the ecosystem sur-
rounding the architecture. The ecosystem comprises of development and analysis tools,
version control methods, documentation and best practices. As an example, almost
2 weeks of work on the Scoop project was nearly lost because some team members
misunderstood the git version control system. The algorithms being used are often
just as, if not more, important in the performace of the final system. 6 Something
as non-technical as the license policy of a certain Simulink tool has a huge impact on
development. We had to adopt a workflow where making the slightest change to the
contents of the ECU implied uploading the entire model to on offsite server, compiling
it and downloading the compiled result. At times, due to poor internet connectivity,
this simply wasn’t an option and it very adversely affected the development, testing and
debugging workflows. Knowing such type of constraints in advance may help the archi-
tect design an architecture that relies less heavily on such ’problem areas’. Technology
is rarely the main deciding factor.

8 Appendix A: Dataflows

This appendix provides a high level overview of the dataflows between the components of
the architecture. A detailed, implementation level description of the dataflows between
various components of the architecture is beyond the scope of this document.

When reading the dataflows presented in this appendix, it would be useful to refer
to Figure 6. For convenience, that figure is shown again here, as Figure 8.

6However we don’t consider that in this report because that is out of its scope.
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Figure 8: Dataflow depicted using a SysML internal block diagram

Port Message Write to Content

ww1 wrm Supervisor Response received to ego vehicle’s join platoon request
ww2 wcm Supervisor Information about the current challenge state
ww3 wtm Estimator Traffic light information
ww4 wsm Estimator Speed limit information
ww5 wvm Estimator Information about other vehicles in the vicinity

Table 1: Wireless write ports

Port Message Read from Content

wr1 eom Estimator Estimated information of ego vehicle

Table 2: Wireless read ports
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Port Message Write to Content

ew1 etm CAN Estimated information about traffic lights
ew2 evm CAN Estimated information of all platoon vehicles
ew3 eom Wireless Estimated information of ego vehicle

Table 3: Estimator write ports

Port Message Read from Content

er1 RT1 CAN Vehicle radar sensor information
er2 VDC2 CAN Vehicle dynamic stability control message
er3 EBC2 CAN Vehicle wheel speed message
er4 TCO1 CAN Vehicle tacograph message
er5 EEC1 CAN Vehicle engine controller message
er6 ETC2 CAN Vehicle transmission controller message
er7 cem CAN Information of ECU platooning algorithm
er8 gdm GPS GPS data
er9 wvm Wireless Information about other vehicles in the vicinity
er10 wsm Wireless Speed limit information
er11 wtm Wireless Traffic light information

Table 4: Estimator read ports

Port Message Write to Content

cw1 RT1 Estimator Vehicle radar sensor information
cw2 VDC2 Estimator Vehicle dynamic stability control message
cw3 EBC2 Estimator Vehicle wheel speed message
cw4 TCO1 Estimator Vehicle tacograph message
cw5 EEC1 Estimator Vehicle engine controller message
cw6 ETC2 Estimator Vehicle transmission controller message
cw7 cem Estimator Information of ECU platooning algorithm
cw8 csm Supervisor ECU status, platoon role and state, speed intent

Table 5: CAN write ports

Port Message Read from Content

cr1 etm Estimator Estimated information about traffic lights
cr2 evm Estimator Estimated information of all platoon vehicles

Table 6: CAN read ports

29



Port Message Write to Content

gw1 gdm Estimator GPS data

Table 7: GPS write ports

Port Message Read from Content

sr1 wrm Wireless Response received to ego vehicle’s join platoon request
sr2 wcm Wireless Information about the current challenge state
sr3 csm CAN ECU status, platoon role and state, speed intent

Table 8: Supervisor read ports

9 Appendix B: Additional questions

The following questions could have been discussed in the report, but were ultimately
not discussed. This is because it was felt that although the topics are interesting and
relevant, answering them requires research of a different nature than that conducted
within the confines of the Scoop project. It is very good to have interesting questions
but the unless concrete work has been towards answering them specifically, bringing
them up in the report adds no value. Nevertheless, they are listed here for reference in
the hope that it may be possible to conduct further research in an attempt to answer
them.

1. Comparison with CVIS/SAFESPOT/HAVE-it architectures

2. How is an architecture design started?

• Traditional approach is to define requirements, use cases and test cases –
Top down

• Also common to jump on the keyboard and start doing something – bottom
up?

– Where do top down and bottom up approaches meet? Can something
be done to ensure they meet up at desired place?

3. Differing types of requirements. Technical, functional, behavioural, non-functional.
How and who should manage them such that they actually contribute to the
project constructively, instead of being dead documents?

4. How will the architecture be documented? What is the minimum set of docs, or
types of documentation needed to completely describe the architecture?

5. How to handle cross-cutting non-functional aspects like safety, timing require-
ments etc.? Where do they factor in into the design?
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