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The development of a cooperative heavy-duty
vehicle for the GCDC 2011: Team Scoop
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Kuo-Yun Liang, Henrik Pettersson, and Dennis Sundman

Abstract—The first edition of the Grand Cooperative Driving
Challenge (GCDC) was held in the Netherlands in May 2011.
Nine international teams were competing in urban and highway
platooning scenarios with prototype vehicles using cooperative
adaptive cruise control. Team Scoop, a collaboration between
KTH Royal Institute of Technology in Stockholm and Scania
CV AB in Södertälje, participated in the GCDC with a Scania
R-series tractor unit. This paper describes the development and
design of team Scoop’s prototype system for the GCDC. In par-
ticular we present considerations regarding system architecture,
state estimation and sensor fusion, design and implementation
of control algorithms and implementation issues regarding the
wireless communication. The purpose of the paper is to give a
broad overview of the different components that are needed to
develop a cooperative driving system; from architectural design,
workflow and functional requirements descriptions to the specific
implementation of algorithms for state estimation and control.
The approach is more pragmatic than scientific; it collects a
number of existing technologies and gives an implementation
oriented view of a cooperative vehicle. The main conclusion is
that it is possible, with a modest effort, to design and implement
a system that can function well in cooperation with other vehicles
in realistic traffic scenarios.

I. INTRODUCTION

The transportation system faces big challenges. The de-
mand for transportation is steadily increasing, while the im-
pact on the environment needs to be significantly reduced
and road congestion better controlled. Fortunately, the rapid
development in information and communication technology
(ICT) presents an excellent opportunity to tackle these prob-
lems through novel integrated intelligent transportation system
(ITS) solutions. Transportation is responsible for the main
part of the increase in oil consumption during the last three
decades and the growth is expected to continue. In 2006, road
transport accounted for 26% of the total energy consumption
and for 93% of the total transport-related CO2 emissions [1].
Hence, the entire transport sector, and particularly road freight
transport by trucks and lorries, has been targeted as a main
policy area where further environmental and overall efficiency
improvements are critical for a sustainable future of European
transport. To ensure sustainability and global acceptance of
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commercial transportation, new systems which reduce the
dependence on oil and minimize emission of greenhouse gases
need to be developed. The European Commission’s goal for
2030 is to reduce European road transport greenhouse gas
emissions to around 80% of the 2008 level [2]. In the same
period, the freight transport is expected to increase by 75%
[3].

Advanced ITS technologies will play a key role in address-
ing the transportation challenges outlined above. An example
is given by the so called green corridors, which will require
the development of a new type of intelligent and cooperative
vehicles and supporting ICT infrastructure and systems. The
vehicles in these corridors need to communicate with each
other (V2V) and with the infrastructure (V2I). These tech-
nologies open up opportunities for concepts like platooning, or
convoy driving, which could reduce the environmental impact
significantly as well as relieve traffic congestion.

A. Platooning and cooperative driving systems

Vehicle platooning is the concept of having several vehi-
cles drive safely together with a short intermediate distance,
often (but not necessarily) making use of vehicle-to-vehicle
communication. Platooning has the potential of contributing
to the solution of several challenging transportation problems;
relieving congestions, reducing the emission of greenhouse
gases and making the road transport more energy efficient.
Platooning with short intermediate distance between the ve-
hicles means that the vehicles can be more densely packed
and, hence, the transportation capacity of the road network
will increase. Another benefit of platooning is that the aero-
dynamical forces acting on the vehicles decrease, which leads
to substantial reductions of fuel consumption and greenhouse
gas emissions. This is in particular true for platoons of heavy
duty vehicles for which the fuel saving potential is about 5-
15% [4], [5]. Although these effects are visible already at a
distance of 30 meters, the big savings will come when the
vehicles can drive closer than 10 meters apart on the highway.
This of course requires accurate (semi-)autonomous1 control
and safe and robust electronic systems, since the reaction times
of human drivers are insufficient.

Many people have studied platooning and cooperative driv-
ing systems before; both the performance and stability of the
cooperating vehicles themselves, and the effect it may have
on the rest of the traffic [6], [7], [8], [9], [10], [11], [12],

1Semi-autonomous means that longitudinal control is autonomous, while
lateral control is manual.
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[13], [14]. Cooperation among vehicles equipped with wireless
communication capabilities is a very important research topic
now. The European Union has been hosting a number of
research projects in this are, for example CVIS2 that develops
communication technology, SAFESPOT3 and COOPERS4 that
focus on road safety, and SARTRE5 on platooning. There is
also significant publication activity in the area. Of particular
interest are two recent special issues on wireless vehicular
communications [15] and emergent cooperative technologies
[16].

B. The Grand Cooperative Driving Challenge
The first Grand Cooperative Driving Challenge (GCDC) was

organized by TNO of the Netherlands in Helmond in May
2011. The competition background, scenarios and judgement
methodology are presented in [17]. In short, the GCDC is a
competition in platooning (in the sense of Cooperative Adap-
tive Cruise Control), where the teams are supposed to develop
a prototype system for a vehicle that semi-autonomously drives
in two pre-defined scenarios; one urban scenario and one
highway scenario. The urban part consists of an automatic
launch from a traffic light, arranged so that a rear platoon
catches up on and joins a front platoon. The highway part
is driven at a higher speed and a lead vehicle is injecting
disturbances (accelerations/decelerations) into the platoon. The
goal is to maintain a specified intermediate distance to the
vehicle ahead and to make sure that the disturbances are not
amplified from one vehicle to the next. The rules and tech-
nological requirements mandated by the GCDC organization
can be found in [17].

C. Outline and scope
This paper describes the development of a cooperative

driving system for the Grand Cooperative Driving Challenge
(GCDC) 2011. The implementation is made by team Scoop,
which is a collaboration between KTH Royal Institute of
Technology and Scania CV AB. A large part of the im-
plementation and design was a direct result of eight master
thesis projects [18], [19], [20], [21], [22]. The purpose of the
paper is to give a broad overview of the different components
that are needed for participating in the GCDC. The approach
is pragmatic; several existing techniques for communication,
state estimation and control are combined and experimentally
validated in real-world scenarios together with other vehicles
with different implementations. Solutions to many practical
problems are presented; such as dealing with traffic light
information, forming and splitting of platoons and degradation
strategies when communication fails.

The following four sections are devoted to certain aspects of
our implementation; system architecture in Section II, wireless
communications in Section III, state estimation and sensor
fusion in Section IV, and control algorithms in Section V.
Finally, a brief summary and some general conclusions are
given in Section VI.

2http://www.cvisproject.org/
3http://www.safespot-eu.org/
4http://www.coopers-ip.eu/
5http://www.sartre-project.eu

II. ARCHITECTURE

This section describes the architecture of the Scoop system.
The Scoop system refers to the hardware and software that is
used to realize the cooperative, adaptive cruise control func-
tionality. The system is installed as a set of distinct, additional
components in a factory standard vehicle. These components
comprise sensors, hardware processors and communication
media between the hardware processors. The interaction be-
tween the Scoop system and the rest of the vehicle takes
place via the vehicle CAN bus. Specifically, the Scoop system
reads relevant signals from vehicle sensors and subsystems
connected to the CAN bus and writes appropriate actuation
signals to the CAN bus. These actuation signals are intended
for consumption by the various factory standard motion control
subsystems within the vehicle.

The Scoop system architecture emphasizes clean design,
separation of concerns and encapsulation of functionality into
components.

A. Engineering requirements

Some key engineering requirements were formulated before
the design was started. The requirements were based mostly
on engineering experience, rather than a specific development
methodology or theory. The requirements were that the archi-
tecture should

1) aid separation of functions, both in their development and
implementation. A function is a self-contained unit of
functionality that does not depend on other functions (at
the same hierarchical level), except for receiving its input.
A function may be composed of a hierarchy of constituent
functions.

2) allow dynamic changes to the way its constituent com-
ponents interact, in order to give rise to different system
behaviors.

3) make it easy to swap in and out different algorithms for
achieving individual system functions.

4) contain diagnostic and self-monitoring services so that
the health of constituent parts can be actively monitored
and faults, if any, can be easily isolated and detected.

5) make it possible to interact with the system as it is
running. It should be possible to examine and modify
parameter values in a running system and observe their
effects.

6) be implementable using existing and proven tools, soft-
ware frameworks, libraries and services.

7) be minimally intrusive/invasive in the existing vehicle
architecture.

B. Solution description

This section describes the Scoop architecture in more detail.
The description begins with statements of some preliminary
decisions and their motivation. Next, the functional decom-
position is described. This is followed by a system level
view, implementation details and an explanation of how the
architecture leads to intended system behavior.
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Figure 1: Top level functions

1) Preliminary decisions: The preliminary decisions are
summarized as

1) The architectural pattern is based on simultaneous exe-
cution of multiple components.

2) The computation/control is split over two distinct types of
hardware. One is a generic computer with a GNU/Linux
software environment, while the other is a standard
automotive electronic control unit (ECU). The generic
computer handles data communication over the wireless
interface, GPS and reads data from the vehicle CAN
bus. It is responsible for sensor data filtering, fusion and
state estimation. The ECU realizes platooning and vehicle
control functions.

3) In the generic computer, standard operating system ser-
vices (a.k.a daemons) are utilized for communication with
the GPS devices and system time synchronization. This
decision is inline with the engineering requirement of
reusing existing libraries and services. Specifically, the
readily available gpsd daemon[23] is used as an abstrac-
tion for GPS devices and the standard ntpd daemon[24]
is used to automatically synchronize system clock with
the GPS clock.

4) The Orocos[25], [26] software component framework is
used for instantiating and executing components in the
generic computer. This framework is chosen because it is
mature, open source, cross-platform, supports real-time
execution of components and due to reasons of prior
experience with it and its support community.

5) A datalogger component is provided for logging inter-
component dataflows, as well as for providing developers
with services to log additional data and human machine
interface (HMI) messages. This component does not
interfere in the core system operation and it is possible
to run the system with this component disabled.

6) The HMI part of the system is completely independent
in design and execution of the core system. It utilizes in-
formation from the datalogger component and is capable
of running on a remote computer.

2) Top level functions: The system is decomposed into five
toplevel functions, as shown in Figure 1.

The information gathering function has the responsibility
of gathering data about the host vehicle and the environment.
The environment consists of other vehicles in the vicinity

CAN

CAN

Figure 2: System view

and road objects like speed signs, traffic lights, lane markings
etc. This information can be gathered by multiple means. For
example, information about the host vehicle can be gathered
by reading the vehicle’s CAN bus and via a GPS device.
Information about other vehicles can be gathered from wireless
broadcasts or local sensors like radar. Information about road
objects can be gathered from wireless broadcasts or local
sensors like cameras. The information gathering component
is thus a conceptual function that provides all the raw data
necessary for operation, regardless of the nature and source of
the data. The raw data provided by the information gathering
function is filtered and fused by the estimation function. The
output of the estimation function is a set of host vehicle,
platoon and environment states.

The control function is responsible for providing vehicle
speed, acceleration and other motion parameters to the rest
of the system. It is also responsible for decisions regarding
joining and leaving platoons.

A vehicle participating in a cooperative driving scenario
must broadcast certain information about itself. This infor-
mation is collected from various parts within the system and
broadcast (generally over wireless media) at different frequen-
cies6. The broadcasts may also contain control requests, for
example, requests to join existing platoons. The information
broadcast function is the single place from which information
goes out of the vehicle.

The supervisor function is responsible for the overall work-
ing of the system. It performs mode management, diagnostic
monitoring and coordinates the information flow within the
system. Conceptually, it is above all other functions in the
hierarchy. The supervisor is also responsible for graceful
system degradation in case of problems.

3) System view: This section presents a high-level logical
view of the architecture as shown in Figure 2.

The ECU represents the control function. The reason to
show it separately is to emphasize the fact that in function,
implementation and operation, it is separate from the rest of
the system. It reads a certain set of data as input and makes
certain actuation requests as output.

The brake control, engine management and transmission are
the ’actuators’ influenced by the ECU. These are standard

6Frequencies here means at different intervals, not the radio frequency of
transmission.



4

Figure 3: Implementation view

vehicle functions provided by the manufacturer for the ve-
hicle’s motion control. The ECU uses them to realize desired
vehicle trajectories. Finally, the rest of the functions are
grouped together for execution on a generic computer. This
is because their implementation is as individual components
in a component based software framework.

The generic computer and ECU are connected to the vehi-
cle’s CAN bus, on which the ’actuators’ are also present. There
is a dedicated CAN bus connecting the generic computer and
the ECU to handle the high bandwith communication between
them.

The GPS device as well as wireless routers are connected
to the generic computer.

4) Implementation: The implementation view of the archi-
tecture is shown in Figure 3. This view shows the functions,
software components and hardware and also how they are
mapped to each other. The functional layer shows the top level
functions that the architecture should realize. It is a purely
abstract layer, intended as a guideline for the implementation
of the other layers.

The next layer is the software layer, which shows the
developed software components and their contribution to the
top level functions. A top level function may be realized
using more than one software component. For example, the
Information Gathering function is realized using a combination
of the GPS manager, CAN manager and wireless components.
A software component may contribute to the realization of
more than one top level function. For example, the wireless
component contributes to the realization of the Information
Gathering as well as the Information Broadcast functions.
There also exist software components that do not directly
contribute to the realization of top level functions. An example
is the logger component. The logger is useful for debugging
the system and exists purely at the software level. The software
components are executed by a realtime operating system, in
this case GNU/Linux, running the Xenomai realtime frame-
work [27] for the Linux kernel.

The software implementation of the control function is
similar in principle to other components in the software
layer. However, the control function differs in its implementa-
tion. The control component is designed and implemented in
Simulink and the software code it executes is autogenerated
from within Simulink. Thus, there is no traditional hand-

coding of the control function.
The lowermost layer is the hardware layer, which executes

the contents of the software layer. This hardware layer is
partitioned into two parts. The first part is the ECU, which is a
physically distinct piece of hardware that executes the control
software. The second part is a generic computer running the
GNU/Linux operating system.

5) Emergence of system behavior: A big portion of the
architecture consists of a set of connected components within
the generic computer, which exchange data. All the compo-
nents in the generic computer are periodic. In every execution
period, a component wakes up, does a specific task and
goes back to sleep. However, before going back to sleep, a
component services requests that may have been made by
other components while it was asleep. Thus, overall system
behavior emerges from the interaction among the components
(data flows and service requests). The different components
behave as follows, every time they wake up

i) The GPS, CAN and wireless components read data from
their respective information sources and send it to the
estimator. The CAN component reads data from the ECU
as well as the vehicle CAN bus.

ii) The estimator uses its input data to update state vectors for
the host vehicle, surrounding vehicles and road objects.
This information is then sent to the CAN component.

iii) The CAN component forwards the estimator information
to the control component in the ECU.

iv) The control uses the information to enter/stay in an
appropriate control strategy and influences the vehicle
actuators. Information about the ECU actions is sent back
to the CAN component.

v) The supervisor component is responsible for system ini-
tialization, monitoring the status of other components,
rerouting data-flows in case of component malfunctions
and system level error management.

vi) The wireless component also periodically reads data from
the estimator and broadcasts it over the wireless interface.

vii) All components send logging data to the Logger compo-
nent which periodically serializes it through a TCP socket
to a separate computer. This separate computer logs the
data to disk and also extracts relevant data and presents
on a graphical interface.

Now let us see how this process works in a typical scenario.
Assume that the vehicle is standing at a red light, and should
start moving when it turns green. The following sequence of
events takes place

i) The GPS reports current vehicle coordinates to the esti-
mator

ii) Information about the position and state of the traffic light
is obtained by the wireless component and sent to the
estimator

iii) The estimator calculates the distance to the traffic light,
the color and the vehicle position and sends this informa-
tion to the control via the CAN component

iv) The control component continuously monitors this infor-
mation and keeps the brakes engaged while the traffic
light directly ahead is red and the vehicle is within a
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threshold distance to the light
v) When the control component receives information that the

traffic light has turned green, it disengages the brakes and
starts accelerating the vehicle forward

C. Evaluation

One criterion for our evaluation of the architecture is how
much it could stay in the background, avoiding intrusion in
the function developers mindspace. A good architecture should
enable developers to easily get the job done, without thinking
too much about architectural limitations or using ’quick-and-
dirty’ hacks to bypass the limitations. Other criteria include
extensibility, robustness and safety. Extensibility means the
ability to easily add more functionality without having to
redesign the fundamental structure. Robustness implies lower
sensitivity to problems in the operating environment as well as
data being processed. Safety means that at no point should the
architecture result in an operating condition that is hazardous
to the vehicle or its environment.

Our architecture scores very well on the above measures.
It clearly identifies what solution patterns are possible, in
terms of available data streams, their routing among the
components and the ways in which components can utilize
services offered by other components. In doing so, it leads and
guides the thinking of the developers, rather than constraining
their ideas. At the same time, the breadth and depth of these
patterns is such that it serves to show possibilities, rather than
constrain the ideas of a developer. The components within
the architecture are fairly independent, and there exists loose
coupling between them. At no point does any component
require a detailed knowledge of the inner working of another
component. This independence of the components also helps
to isolate faults and limit their propagation, thus making the
system more robust. The supervisor component can be used
to quickly "re-wire" the connections between components,
leading to flexible system behaviors.

A few minor issues were identified which occurred more
due to lack of sufficient internal communication among the
team, rather than architectural restrictions. However, none of
these issues are especially severe and fixing them does not
require fundamental changes to the architecture. At no point
did the system enter unsafe states. The emergency and manual
overrides always worked, but weren’t actually needed during
the competition. We believe this architecture is a substantially
sound basis for further development of vehicular ITS systems.

III. COMMUNICATION

The wireless communication in our system is designed using
the required 802.11p physical layer, the CALM-fast protocol
and ASN1 package coding. CALM stands for communication
access for land mobiles, fast refer to non-IP based communi-
cation and ASN1 stands for abstract syntax notation version
one. In this section we will describe our implementation of
the communication module. For more details regarding the
communication protocols, see [19].

A. Communication Protocols

The protocol for the wireless communication is decided by
GCDC: a CALM-fast stack on top of the 802.11p physical
layer, with ASN1 encoding. In the following we will discuss
our solution to on how to implement the 802.11p physical layer
and the CALM-fast stack. We will also give some comments
on the ASN1 encoding/decoding.

1) CALM daemon and libcalmfast: The CALM-fast proto-
col is not a standard and in order to make the network card
for 802.11g/h work with 802.11p, some modifications to the
driver was necessary. In addition to these modifications, a calm
library and a background process (daemon) called the calmd
(for calm daemon) is used. This software was provided by
GCDC organization provided a 32-bit kernel. However, many
teams used a 64-bit kernel and team Annieway hosted a fork
of the software. Most teams who were using it contributed in
terms of bug-fixes, including us.

2) ASN1 encoder/decoder: For the ASN1 encoding and
decoding, we use the open source software asn1c [28]. Be-
cause our system is 64-bit it is necessary to be careful with
two things. The first thing is to make sure you use version
0.9.23 (only possible to get via GIT) and the second thing is
to replace all ambigious types (unsigned long, etc).

B. Program flow

The main challenge in constructing the wireless communi-
cation component of our system is the requirement of robust-
ness and computational efficiency. The program needs to be
robust since internal control relies heavily on what we receive
from other vehicles and we can expect that other vehicles rely
heavily on what we are transmitting. The program needs to be
computationally efficient since it resides on the same platform
as the more complex (and crucial) state estimations and CAN-
message communication components.

A limiting factor in the communication libraries is that the
proposed sending function call cf_publish is a blocking
call. We can not allow the communication component to block
the system, so we create two threads. One thread then takes
care of the blocking sending function and the other takes
care of the remaining, non-blocking, tasks. When dealing with
multi-threaded programs it is important to beware of dead-
locks. A dead-lock can occur when two, or more, threads
simultaneously wait for the other to finish some task. To avoid
dead-locks, mutexes (mutual exclusion) are used. It is very
important that any code involving mutexes is free of bugs,
since a problem with them may lock the whole system. To
simplify thread and mutex implementation we are using the
Boost libraries [29].

A simplified program flow of the communication component
can be seen in Figure 4a. On the left-hand side of the “new
thread”-cloud of the diagram, the parent thread is shown and
on the right-hand side of the cloud the child thread is shown.
The parent keeps adding information to the outgoing buffer,
which is sent over the wireless by the child. The dashed arrows
from the timers to the mutex sleep symbolizes a notification
from the parent to the child thread that there is work to do.
Besides the timers, there are other components in the parent
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thread that can put information to the transmit buffer, but
these are not depicted here. The parent also receives data
and forwards it to other components in the system, i.e. the
Estimator and CAN components.

In Figure 4b, the send timer flow is depicted. In this figure,
the timer is restarted, a message is put on the buffer and the
notification to the mutex sleep is sent. There are two send
timer, because there are two types of messages that are sent
repeatedly at different timer-intervals.

new thread

mutex
sleep

buffer
empty?

send
data

send
timer1

send
timer2

receive
data

yes

no

(a) The main wireless communication flowchart

timer
elapsed?

set new
timer

put
message
on buffer

notify
mutex
sleep

yes

no

(b) The send
timer module

Figure 4: Communication program flow

Besides handling the wireless communication, the wireless
component takes care of some simple transformation from
external to internal units. For example, externally, km/h is the
unit for speed but internally the unit is m/s. This conversion
is done in the receive data and send data clouds in Figure 4a.
These clouds also take care of the encoding/decoding from
ASN1 and incorporates the appropriate functionalities from
the calm libraries (see section III-A1).

C. Physical Set-Up

From our system’s perspective, the calmd works as an
abstraction for the wireless interface. Our wireless component
sends/receives data to the calmd via TCP/IP sockets. There-
fore, it is irrelevant where the calmd is executing. In case one
system should fail, we have two equivalent physical options
for the wireless. The first option is to let the calmd run on the
same machine as the rest of the system, with an off-the-shelf
network card and modified network stack. The second option
is to let the calmd run on a wireless router provided by TNO
(ALIX). Switching between these two options requires the
change in the configuration containing IP-address information
of where the calmd is running.

D. Evaluation/Conclusions

It turned out that we had some trouble with our own network
hardware. The problem appeared as communication losses
spanning a few seconds up to several minutes at seemingly
random occasions. The reason for this is not identified, but
we suspect that it may depend on a faulty PCI to miniPCI
converter used for the network card. We solved the problem

by switching to the equivalent system setup where the calmd
runs on the ALIX board (see previous section).

At three occations during the preparation week, our system
mysteriously crashed due to some problem in the wireless
code. At the last crash, we had the forseight to make sure
a coredump with crash information was generated. It turned
out that one of the asn1c function methods (uper_decode)
for decoding a message coming from other vehicles may return
success when in fact the actual message it returns is empty.
When we then later try to release the memory allocated by
this (empty) message, the program crashes. We solved this by
a redundant message sanity check.

With the two problems fixed, we experienced very good
wireless performance. Thanks to the truck, our antenna was
mounted at a relative high position providing good coverage
and thanks to the simple design, communication delays were
down to order of milliseconds.

IV. STATE ESTIMATION

In this section we look more into the state estimation
module, which estimates a number of states based on the
available information, and the mathematical models that are
involved. The information sources for the state estimation are
the vehicles’ onboard sensors and also the data transmitted
from the other vehicles in the platoon. Kalman filters [30]
are employed as the state estimator. For a more detailed
description of the estimator, see [20].

A. Background

The states to be estimated are the variables that are nec-
essary for the controller to control the vehicle. They mainly
include the relative distances of the platoon vehicles with
respect to the own (host) vehicle, their absolute velocities
and their absolute accelerations [18]. Additionally, GCDC has
specified mandatory information that are exchanged between
the vehicles via wireless, which also has to be estimated. There
are four types of objects that need to be tracked: the host
vehicle, the other vehicles, speed signs, and traffic lights. For
the host vehicle, a Kalman filter based on the classical bicycle
model (see e.g. [31]) is considered. For the other vehicles,
a simpler Kalman filter is used and for the speed signs and
traffic lights, only a few states are estimated.

B. Available information

Four types of sensors are used for gathering the measure-
ment data in this study. These are the GPS, wheel speed sensor,
acceleration sensors and the gyro / steering sensors. All of
these sensors except the GPS are embedded internally in the
truck and can be accessed via the controller area network
(CAN) bus system. In addition to these raw sensors, we have
also access to a radar and information gathered from the
infrastructure and other vehicles over the wireless. Details of
the sensors are given below.
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1) GPS: The GCDC organization provided a real time
kinematic (RTK) GPS transmitter and to guarantee that we
could meet the position accuracy we use the Trimble SPS 852
GPS receiver that can achieve an order of decimeter accuracy
using the RTK signal. From the GPS receiver, we are mainly
interested in the position (longitude & latitude), heading and
ground speed information. The GPS is configured to deliver
data at 10 Hz rate.

2) Wheel speed sensor: The ground speed data from the
GPS is fairly accurate, but as the GPS signal reception can
sometimes fail, a redundant source of ground speed has to be
available. Therefore, the speed from the wheel speed sensor
(WSS) was used as the secondary vehicle road speed source.
Also, the variation in the wheel radius can result in less
accurate speed estimates. This primarily occurs due to changes
in the tyre pressure over the passage of time. The resulting
error incurred in the speed from the WSS is therefore time
varying in nature. This error is modeled by a time varying
factor which is estimated with the help of GPS road speed
serving as the primary reference.

3) Acceleration sensors: Two types of acceleration signals
are available from the embedded sensors in the truck. One is
the longitudinal acceleration, which is obtained by differentiat-
ing the vehicle speed of the truck. Apart from the longitudinal
acceleration, the lateral acceleration signal is also measured.
The lateral signal source is an accelerometer present in the
truck that directly measures the body y-axis acceleration. This
signal also contains an inherent bias, which may be time
varying in nature. It can be caused by non-horizontal mounting
of the sensor or by driving on a non-horizontal road. It could
also represents some degree of imprecision in the instrument
manufacturing.

4) Gyro and steering sensor: The vehicles built-in gyro-
scope is used to measure the yaw-rate of the truck. A bias
signal that is associated with the measurements is also modeled
and estimated. Apart from the yaw-rate, steering wheel angle
measurements are also used. In the current set-up, there is no
sensor providing the angle directly from the front wheels. The
wheel angle is derived from the angle of the servo for the
steering wheel.

5) Radar: The TRW AC20 millimeter wave radar is used,
which is a standard radar present in many Scania trucks and
it works in the 76-77 GHz band. It has an advantage over
other types of sensors, such as optical or infrared sensors, in
that it performs reliably during day, night and in most weather
conditions. It is used to get the distance of the vehicle in front,
its relative speed and absolute acceleration.

6) Wireless: The wireless communication is the source of
information from the other vehicles in the platoon. Each ve-
hicle transmits its state information in a pre-decided message
format.

C. Requirements from GCDC

The GCDC committee specified the accuracy requirements
for the dynamic states that each competing vehicle has to
deliver to the other vehicles over the wireless channels. These
are listed below

a) Position accuracy: The requirement for the position
accuracy εp is given by, εp ≤ 1m.

b) Speed accuracy: Only longitudinal speed estimates
are required to be transmitted. The criterion for the speed
accuracy εs is given by, εs ≤ 0.5m/s.

c) Acceleration accuracy: The criterion for the longitu-
dinal acceleration accuracy εa is given by, εa ≤ 0.2m/s2.

D. Vehicle Modeling

For the host vehicle, the choice of which states to be esti-
mated is based on multiple things: required information by the
controller, requirements imposed by GCDC and information
availability from the various sensors, see section IV-B. The
states estimated for the own vehicle are: position in east-
north-up (ENU) reference frame [pe, pn, pu], velocity in the
body frame [vx, vy], vertical velocity vd, acceleration in the
body frame [ax, ay], heading angle ψ, side-slip angle β and
yaw-rate ω. In addition, some scaling and bias parameters are
tracked: speed scale factor η, lateral accelerometer bias bay
and yaw-rate gyro bias bω . For efficiently keeping track of all
these parameters, estimation is divided in three sub-models
described in the following sections.

1) Speed Estimation Sub-Model: This model deals with
estimation of speed and acceleration dynamics: vx, vd, ax and
η, and are defined by the following set of equations

v̇x = ax

v̇d = 0

ȧx = 0

η̇ = 0.

(1)

In the above model, the vertical velocity vd and longitudinal
acceleration ax, together with the speed scale factor η are
modeled as random walk i.e. their derivatives are set to
zero. This is because their dynamics could not have been
modeled based on the available information. The measurement
equations for this model are:

vcanx = (1 + η) vx + ev,can

vgpsG = vx + ev,gps

vgpsd = vd + evd

acanx = ax + eax.

(2)

Here, vgpsG is the GPS measured ground speed. Here, the
measurement noise vector is given by e(spd) is given by
e(spd) = [ev,can, ev,gps, evd, eax]

T .
2) Lateral Dynamics Estimation Sub-Model: This model

deals with estimation of the lateral dynamics: β, ω, ψ, bay, bω
and vy . These states are defined by the following set of
equations, as mentioned in [32], [33], [34]:

β̇ =−CF−CR

mvx
β +

(
−aCF +bCR

mv2x
− 1
)
ω + CF

mvx
δ,

ω̇ =−aCF +bCR

Iz
β +

(
a2CF +b2CR

Izvx

)
ω

+
(
−aCF +bCR

Izvx

)
vy +

aCF

Iz
δ,

v̇y =
(
−vx + −aCF +bCR

mvx

)
ω +

(
−CF−CR

mvx

)
vy +

CF

m δ,

ψ̇ = ψ, ḃay = 0, ḃω = 0.

(3)
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In (3), m is the vehicle mass, a and b are the distances
between the center of gravity and the front and back wheels,
CF and CR are the cornering stiffness of the tires and Iz is the
vehicle moment of inertia about the z-axis. These parameters
need to be estimated in some way, but that problem is not
treated here. Longitudinal velocity vx and the wheel steering
angle δ appears as the control input. ψ̇ is set to ψ as mentioned
in [32] and the derivative of two biases bay and bω are set
to zero as they modeled as random walk. The measurement
equation for this sub-model is given by

ψgps = ψ + eψ

ωcan = ω + eω

acany = −aCF−bCR
mvx

ω + −CF−CR
mvx

vy + bay +
CF
m
δ + eay.

(4)

In (4), subscript on the measurement variables indicate the
source of the measurement. The measurement noise vector
e(lat) is given by e(lat) = [eψ, eω, eay]

T .
3) Navigation Sub-Model: This model estimates the po-

sitions [pe, pn, pu] in ENU frame by the following set of
equations

ṗe = vx sinψ

√
1− v2d

v2x+v2y
+ vy cosψ

ṗn = vx cosψ

√
1− v2d

v2x+v2y
− vy sinψ

ṗu = −vxvd√
v2x+v2y

.

(5)

The position measurements from the GPS receiver are de-
fined in geodetic frame of reference i.e. in terms of longitude,
latitude and altitude above the mean sea level. They are
converted into the position in ENU frame using equation
mentioned in [35]. The measurement equations for the model,
in ENU frame, are given by

pgpse = pe + ee

pgpsn = pn + en

pgpsu = pu + eu,

(6)

where the noise is given by the noise vector ek = [ee, en, eu]
T .

4) Implementation: Three interconnected filters are created
using the sub-models. This filter structure is depicted in
Figure 5. First is the speed estimation filter that feeds its
estimates to the lateral dynamics model. Finally the navigation
filter is run based on the outputs from the former two filters.
The speed estimation filter is implemented as an extended
Kalman filter, while the other two filters are regular Kalman
filters.

Figure 5: Implementation structure of the Kalman filter

E. Platoon Vehicle Modeling

When multiple vehicles travels one after another they can
choose to form a platoon. In our definition of a platoon, each

vehicle that wants to participate in the platoon will have to join
the platoon by changing their platoon ID. The platoon ID of a
vehicle is broadcasted over the wireless so other vehicles know
which platoon they are part of. The vehicle at the absolute front
of the platoon is termed as the platoon leader. Each vehicle
tries to keep the coherence in the platoon by controlling its
speed i.e. maintaining a constant distance to the vehicle ahead.
The vehicle ahead will be carefully estimated regardless of
wether it is part of our platoon or not. In our implementation,
the controller bases many of its actions on properties of the
platoon members in front of us and of the vehicle ahead. The
estimation module is responsible for providing a set of control
states, defined in [18], of the platoon vehicles to the controller.
The control states are not necessarily the same states as the
states tracked by the estimator, but they are rather a set of
parameters associated with each individual vehicle in relation
to the host vehicle influencing its behavior. The states in our
system are:
• The relative base distance of the other platoon vehicle

relative to the host vehicle along the axis of motion. This
variable is positive for the vehicles ahead and negative
for the ones behind.

• The absolute speed of the other platoon vehicles.
• The absolute acceleration of the other platoon vehicles.
1) Vehicle Model: For our system, we are only interested in

tracking the states of vehicles in front of us. All vehicles ahead
of us are represented by six state variables: east and north
position coordinate in the ENU frame pie and pin, longitudinal
velocity vix, longitudinal acceleration aix, heading (or yaw-
angle) ψi and yaw-rate ωi, where the index i denotes the
position in the platoon. The process model equations in this
case are

ṗie = vix sinψ
i, ṗin = vix cosψ

i

v̇ix = aix, ȧix = 0 (7)

ψ̇i = ωi, ω̇ = 0

The measurement equations are

pi,we = pie + eie, pi,wn = pin + ein

vi,wx = vix + eivx, ai,wx = aix + eiax (8)

ψi,w = ψi + eiψ, ωi,w = ωi + eiω

The measurement noise vector ek is given by
ek = [eie, e

i
n, e

i
vx, e

i
ax, e

i
ψ, e

i
ω]
T , where the superscript w

denotes that the source of this information is the wireless
communication. The noise covariance matrices are used as
tuning parameters in the Kalman filters. They have been
assigned a diagonal structure, which corresponds to that all
noise sources are uncorrelated.

F. Object Management

There are three types of objects that need to be tracked in
the estimator: vehicles, speed signs and traffic lights. Besides
tracking and estimating a number of parameters for each
object, the estimator also need to order, label and decide which
of them are important or not in order to provide the correct
information to the controller. In this section we will describe
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how these objects are managed by starting with describing the
relative base distance (see next section). All objects, except
the vehicle ahead, are forgotten by the estimator if they have
not been transmitting any information over the last 3 seconds.

1) Relative Base Distance: The relative base distance b is
a distance derived from the host vehicle to any object. It is
relative because it is signed: it is negative if the object is
behind the host vehicle and positive if it is in front. We refer
to it as a base distance because it is the position of the object
projected on the line in which the host vehicle is traveling. The
line bearing ϕ is the angle to the object relative the heading
of our vehicle. See Figure 6 for an example of relative base
distance and line bearing.

N

b

ϕ

Figure 6: Relative base distance b. Line bearing ϕ.

2) Vehicle ahead: The Vehicle Ahead is defined as the
vehicle that is immediately in front of the host vehicle. To
find out which vehicle is placed immediately in front of us,
we sort a list of all known vehicles and pick the vehicle
with smallest positive relative base distance as the vehicle
ahead. In order not to identify vehicles in adjacent lanes we
also sort out the vehicles that have line bearing within ± 10
degrees and that have the same heading as our own vehicle
(within some tolerance). The vehicle ahead has a critical
importance in the control of host vehicle since we want to stay
as close as possible to it, which is why it also deserves special
treatment in the estimation process. The idea here is that the
accuracy and reliability of the information of the vehicle ahead
can be significantly improved by fusing its estimated data
with the data from the radar. Data from the radar gives the
following information about the vehicle ahead: the relative
distance, relative speed compared to the host vehicle and
absolute acceleration. Let Xctrl be the vector of the control
states containing the relative base distance, absolute speed and
absolute acceleration estimates from the EKF, and Xrdr be the
vector containing the same variable measured by the radar.
These two vectors have covariances matrices Pctrl and Prdr
respectively. They can be fused together by using the formula
given in [36, p. 29-30],

Xfus = (P−1
ctrl + P−1

rdr)
−1(P−1

ctrlXctrl + P−1
rdrXrdr), (9)

where Xfus is the fused vector having covariance matrix
(P−1
ctrl + P−1

rdr)
−1. The covariance matrix Pctrl is obtained

by taking the differences of the position and velocity state
covariances for the own vehicle and the vehicle in front, and
using the term for the longitudinal acceleration in the state

covariance matrix of the speed estimation filter. The covariance
Prdr is obtained from the measurement inaccuracies, given in
the radar data sheet.

The implementation of the process of estimating vehicles is
shown in Figure 7.

Figure 7: Separate estimation model representation

3) Platoon Members: Of all the members of our platoon,
the controller is only interested in platoon member vehicles
in front of the host vehicle. To find the platoon members in
front of the host vehicle, the vehicles in front that have the
same platoon ID as the host vehicle are picked out, sorted by
relative base distance, and passed on to the controller.

4) Speed Signs: The speed sign information is also sent to
the controller. For these, the current speed and the relative base
distance to a speed change along with the speed is forwarded
to the controller. No other state estimations are done here.

5) Traffic Lights: The traffic lights send information about
when the change of color is going to be made and to which
color, e.g. "in 2 seconds I will turn green". This information
is processed in the estimator and handed to the controller. In
case of many traffic lights, only the closest traffic light ahead
of the host vehicle is considered.

G. Summary and conclusions

State estimation can be characterized in two distinct stages.
In the first stage, the states required to be sent to the other
vehicles are estimated together with some other additional
states. This is implemented as a cascade of three Kalman filter,
as shown in Figure 5. The lateral dynamics of the vehicle,
e.g. side slip and lateral velocity, are estimated via the bicycle
model. The filters are fed with data from the vehicle’s CAN
bus and the RTK-GPS. The platoon vehicle estimation is the
second stage of the state estimation process. This stage is
implemented in form a parallel Kalman filter bank, with each
vehicle being estimated by one of the filters, individually,
see Figure 7. They are fed by the data from the wireless
interface and the estimated states of the host vehicle. The state
model equations for each vehicle are similar to the ones of a
simple two dimensional kinematic model. Each time a new
vehicle joins the platoon, a new filter has to be initiated for
that vehicle. Likewise, when a vehicle leaves the platoon, its
filtering operation has to be aborted. Each filter has a state
vector and a state error covariance matrix that has to be stored
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and kept track of. For the vehicle ahead, additional protection
is provided by incorporating the data from the onboard radar.
The performance of the state estimation clearly depends on the
quality of the available data, for example the outage duration
of the GPS measurements and of the wireless communication
(from the other vehicles) and the accuracy of the measurements
in general. The accuracy of the process models of course also
influence the state estimation. For example, as no information
about the lateral dynamics of the platoon vehicles is available,
the filters track the vehicles’ motion in a less precise manner
when their lateral motion is significant, e.g., when undergoing
sudden turns.

V. CONTROL

With the aid of vehicle to vehicle (V2V) communication,
vehicle characteristics and events such as harsh braking can
be transmitted within the range of the wireless channels. This
local information can be utilized as inputs for an automated
control strategy to govern the vehicles at close intermediate
spacing, far less than what is feasible for a human driver
due to their relatively high reaction time. As intermediate
spacing is reduced, the control must be increasingly stringent
due to safety concerns. Driver comfort considerations are also
important and may put a limit on the minimal distance between
vehicles [37].

In this section we introduce the control objectives and
requirements that are emphasized in the control design. A
control system architecture is presented to decompose the
control problem into manageable subsystems. A system model
is described, which is used as a basis for the control design.
Finally, a robustness analysis is presented along with experi-
mental results.

A. Control objectives and requirements

To ensure the performance for a single vehicle within a
platoon, the controller must handle several different scenarios.
Information regarding traffic light states is facilitated through
wireless transceivers, which are mounted on road side units.
The controller must be able to deduce whether the vehicle will
be able to pass the traffic light before it turns red or if it must
come to a halt. Another performance criterion is that a (sub-
)platoon must be able to merge with another platoon if that
scenario arises or split from the platoon if deemed necessary.
Hence, a single vehicle should adapt its velocity with respect
to several situations. Furthermore, due to safety concerns the
vehicles are not allowed to exceed the given road speed limit.
The driver must also be allowed to override the system if
necessary. Therefore, the system must shut off if the throttle
or brake pedal is pressed or if an emergency button is activated.

In addition to performance criteria, several constraints are
set upon the system. Only longitudinal control is mandated.
The driver should at all times be active and control the lateral
movement of the vehicle. Vehicles are not allowed to enter or
exit the platoon from the side. Finally, maximum acceleration
and deceleration constraints are set upon the system due to
vehicle heterogeneity.

Table I: Table of the specified signals required to provide the
vehicle specific information span.

Signal: Description:

Position Absolute value as given by the GPS.
Position accuracy An estimate provided in meters within

the 95 % confidence interval.
Speed Derived from the GPS

or the onboard tachometer.
Longitudinal acceleration Absolute value.
Heading To distinguish the platoon

from oncoming traffic.

Multiple
vehicles

Two
vehicles

Single
vehicle

Figure 8: Control system architecture.

A standard has not yet been set regarding what information
should be available through V2V communication. However,
the signals listed in Table I are considered here and is seen as
mandated to monitor the local vehicle behavior. A maximum
information span of ten vehicles is taken into account. In the
event of a communication failure, the controller must still
produce a robust control strategy. Therefore, the system always
keeps track of the vehicle ahead, regardless of which platoon
that vehicle belongs to.

B. Control architecture

The need for a carefully developed control architecture has
been studied, for example in [38] and in [5]. The control
system relies on the underlying information span and its
structure will vary if the range of inputs changes. To divide
the problem under consideration into manageable subsystems
for control design, a three layer control system is designed as
depicted in Figure 8. Each layer is assumed to have access
to the information from the road side units at all time. The
differentiating factor between each layer is the availability of
platoon information.

Starting from the bottom, layer I includes control challenges
for a single vehicle when no surrounding traffic is taken
into consideration. The controller can simply use the onboard
cruise controller (CC) to maintain a given reference velocity.
However, an amendment to the conventional CC is the ability
to handle traffic light information.

In layer II, information regarding an immediate preceding
vehicle is introduced through radar functionality. The control
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vID = 7
pID = 7

Leader

LeaderFollowerFollower

vID = 7
pID = 7

vID = 5
pID = 7

vID = 3
pID = 7

No followers

Figure 9: Every vehicle has a unique vehicle ID (vID), while
its platoon ID (pID) is always set to the leader’s vehicle ID.

objective in this layer is to maintain a given relative distance
and velocity to a vehicle ahead. The set of controllers that we
are referring to in this layer is for example the conventional
adaptive cruise controller (ACC).

Lastly, in layer III interaction between the vehicles in the
platoon is introduced. The controller challenge and objective
in this layer is to form a cooperative adaptive cruise control
(CACC) strategy. The controller must be able to handle the
varying range of vehicle information and the platoon logic. In
the platoon logic every vehicle has a platoon ID and a unique
vehicle ID, which are broadcasted periodically. When taking
the role of a platoon leader, the platoon ID shall be set to the
own vehicle ID, as shown in the top part of Figure 9. Similarly,
when acting as a follower, the platoon ID shall be set to the
leader’s vehicle ID, which is illustrated in the lower part of
Figure 9.

As we move up in the architecture layers, the controller
complexity increases. However, the controllers in each layer
can be designed independently and incorporate different modes
depending on the underlying control input span. The pre-
sented architecture allows for a graceful degradation. If the
communication node of the host vehicle fails, the control
degrades to layer II, where the radar functionality still enables
an automated control for platooning. Furthermore, if the radar
system fails, the driver is instructed to take full control of the
system.

C. System Model

The state equation of a single vehicle in a platoon is [39]

mtv̇ = Fengine − Fbrake − Fairdrag(v)
− Froll(α)− Fgravity(α)

(10)

where v is the vehicle velocity and mt denotes the accelerated
vehicle mass. The modeled forces in (10) that act on a vehicle
in motion are internal forces consisting of the engine and
the brake force and the external forces being the air drag,
roll friction and gravity. For simplicity we assume that the
road slope α is constant and we lump together the effects of
roll friction and gravity into one constant kf . The air drag is
modeled as Fairdrag = kdv

2, where kd is the vehicle specific
air drag coefficient. We combine the engine and brake forces

and let the control signal be u = Fengine − Fbrake. Now the
model (10) is written as

mtv̇ = −kdv2 − kf + u (11)

By introducing new variables ṽ = v− vo and ũ = u−uo that
are the deviations from an equilibrium point {vo, uo} of (11),
the linearized model is then given by

˙̃v = aṽ + bũ (12)

where a = −2kdvo/mt and b = 1/mt.
All vehicles in the platoon will be assumed to have linear

dynamics according to (12) and a sub-index will be used
on all variables and parameters to associate them with a
specific vehicle in the platoon. (The vehicles will of course not
have identical dynamics, but the information about individual
dynamics is not available, why this assumption is made.)
The lead vehicle has index 1 and the host vehicle has index
i. To establish a simplified system model as a premise for
control design, it is assumed that all other vehicles control
their velocities based only on the own velocity and the velocity
of the vehicle directly ahead. In particular, we consider the
control ũk = βkṽk+γkṽk−1 for k = 1, ..., i−1, where ṽo ≡ 0
(since the lead vehicle does not have a vehicle in front of it).
The model of the entire platoon is

˙̃v1

˙̃v2

...
˙̃vi−1

˙̃vi
ḋi,i−1


=



θ1 0 . . . 0 0 0
η2 θ2 . . . 0 0 0
...

. . . . . .
...

...
...

0 0 ηi−1 θi−1 0 0
0 0 . . . 0 ai 0
0 0 . . . 1 −1 0


︸ ︷︷ ︸

A



ṽ1

ṽ2

...
ṽi−1

ṽi
di,i−1


︸ ︷︷ ︸

x

+



0
0
...
0
bi
0


︸︷︷ ︸
B

ũi

(13)

where θk = ak+bkβk and ηk = bkγk. The model also includes
the state variable di,i−1, which is the relative distance between
vehicle i and i−1. In the following analysis it will be assumed
that all other vehicles have identical dynamics and identical
controllers. It will also be assumed that the controllers are
designed so that all vehicles have the same velocity in steady
state. This means that θk = θ and ηk = −θ for all k.

D. Control Design

The controller structure varies depending on whether the
vehicle is alone or in a platoon. When the vehicle is not in a
platoon, it operates through the CC with the given road speed
as the reference and acts on traffic lights. Information regard-
ing traffic light state is received through V2I communication.
The received information contains the traffic light position,
current status, next and second next light, time to next and
second next light.

To ensure that the vehicle does not cross the traffic light
while red, the controller in layer I, Figure 8, checks if the
traffic light is green and calculates if the vehicle can pass
with its current speed as given by

tred >
dt − doffset

v
(14)
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where dt is the distance to the traffic light with a stopping
offset doffset , v is the vehicle speed and tred is the time when
the traffic light turns red. If (14) is not satisfied, the controller
deems that the vehicle has to stop at the traffic light. Then an
appropriate deceleration trajectory is calculated based upon the
distance to the traffic light and the current speed required to
stop at the desired distance from the traffic light. Starting from
initial velocity vi with constant acceleration a gives at time t
the velocity v(t) and the travelled distance d(t) according to

v(t) = vi + at, d(t) = vit+
at2

2
(15)

Squaring the first equation gives

v2(t) = (vi + at)2

= v2
i + 2viat+ a2t2

= v2
i + 2ad(t)

(16)

In this case v(t) = 0, vi = v and d(t) = dt − doffset . Thus,
the acceleration needed to stop is given as

a = − v2

2 · (dt − doffset)
(17)

Hence, the control task in this layer is to maintain a given
velocity reference through the onboard CC or to adapt the
velocity with respect to the upcoming traffic light state. In
this layer, the vehicle is assumed to act as a platoon leader.

In layer II, Figure 8, the onboard ACC is utilized to govern
the vehicle and mainly serves as a precautionary control
strategy in case of wireless communication failure. However,
the control objectives in layer III mandate a more advanced
strategy. Here, the controller task is to maintain an appropriate
velocity with respect to all the preceding vehicles in the local
platoon and a given intermediate spacing with respect to the
immediate vehicle ahead.

When the vehicle is a follower in the platoon, a linear
quadratic regulator (LQR) control is utilized, where the con-
troller reacts on deviations from the given relative distance
to the vehicle ahead as well as for relative speed of all the
preceding vehicles. The controller is derived analytically by
minimizing the cost function

J∗ = min
u

∫ ∞
0

xTQx+ uTRu

s.t. ẋ = Ax+Bu

(18)

where Q ≥ 0, R > 0 are weight matrices and A, B are
system matrices. These matrices are of varying size based upon
the number of preceding vehicles in the platoon. u denotes the
control input and x is the state vector that entails the speed of
the host vehicle, the relative distance to the closest preceding
vehicle and the velocity of preceding vehicles in the platoon.
For general LQR-design the weighting factors need to be
specified and adjusted based upon the results of the specified
design goals [40]. The lead vehicle’s objective is to follow
a given reference velocity. However, the follower vehicles in
the platoon have an additional objective of maintaining the
set intermediate distance. The desired relative distance is set
to vary depending on the vehicle velocity. It is determined

by setting a time gap τ s, which gives the desired headway
as dref = τvi + dmin for the host vehicle, where dmin is the
minimum allowed intermediate spacing. Thus, considering the
platoon objectives, the cost function can be set up as

J(u∗i ) =min
ui

tf∫
t0

wτi (d(i−1)i − dref )2 +
∑
j∈N

w∆v
j (vj − vi)2

+ wdi d
2
(i−1)i + wvi v

2
i + wui

i u
2
i dt

=min
ui

tf∫
t0

xTQx+Riu
2
i + wτi dmindt

(19)

where N denotes the set of preceding vehicles and

Q =

[
Q1 Q2

Q3 Q4

]
, R = wui

i , (20)

are cost matrices. The submatrices, Q1, . . . , Q4, varies with
the size of the number of preceding vehicles and are given as

Q1 =


w∆v

1 0 . . . −w∆v
1

0
. . . 0 −w∆v

2
... 0 w∆v

i−1

...
−w∆v

1 −w∆v
2 . . . τ2wτi + wvi +

∑
j∈N w

∆v
j

 ,
Q2 =

[
0 . . . 0 −τwτi

]T
,

Q3 = QT2

Q4 =
[
wdi + wτi

]
,

(21)

In accordance with the objective for a vehicle traveling in a
platoon, wτi in (19) determines the importance of not deviating
from the desired time gap and w∆v

j creates a cost for deviating
from the velocity of the preceding vehicles. The following
terms, wdi , w

v
i , w

Ti
i , put a cost on the deviation from the

linearized states and the control input. Since the main objective
is to maintain a set intermediate distance, wτi must be set larger
than the remaining weights. However, there is an inherent
constraint on the weight parameter, wui

i , on the control input
such that it remains within the physical constraints set within
the system.

After setting the weighting parameters, the optimal control
input, u∗, can then be derived analytically by solving a Riccati
equation

u∗i = −Lx = −(l1v1 + l2v2 + · · ·+ livi + lddi−1,i),

L = R−1BTP,

0 = PBR−1BTP −ATP − PA−Q.
(22)

The controller gains, l1, l2, . . . , li, are derived for a range
up to nine preceding vehicles (ten including the host vehicle)
and a gain scheduling control is formed based upon several
different equilibrium points and platoon lengths.
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E. Robustness and string stability

In a platoon, string stability is an important robustness
criterion [7], [8], [13], [41]. See also [17, Section A.2] for a
nice overview of how the string stability concept is used in the
GCDC. String stability is a measure on how good the vehicles
in a platoon are at subduing disturbances introduced by pre-
ceding vehicles. A system in which a change of velocity of the
lead vehicle can be amplified and propagated throughout the
platoon is not considered to be string stable. This disturbance
amplification could eventually lead to vehicle collisions, hence
it is of most importance to have a string stable controller.

First, let the relation between two subsequent vehicles be
described as

Vk(s) = Gk(s)Vk−1(s) (23)

where Gk(s) is the transfer function from k − 1:th to k:th
vehicle and Vk(s) := L(vk(t)) is the Laplace transform of the
time domain velocity. The string stability criterion can then be
described as [41]:

‖Gk(s)‖∞ ≤ 1 (24)

where k ∈ [2, N ], where the platoon consists of N vehicles
and where ‖Gk(s)‖∞ = maxω |Gk(jω)|. This states that a
disturbance in the velocity of a preceding vehicle cannot be
amplified. The above analysis is valid for the case when the
velocity of one vehicle only depends on the velocity of the next
vehicle ahead. If all vehicles fulfill (24) then any disturbance
injected in the platoon will be attenuated when it propagates
from vehicle to vehicle. The first i− 1 vehicles in the model
(12) can be analyzed in this way. The transfer function from
one vehicle to the next is given by Gk(s) = ηk/(s − θk),
which fulfills (24) if and only if θk < 0 and |ηk| ≤ |θk|.

The controller (22) that we propose for our vehicle, how-
ever, depends on the velocity of all preceding vehicles in the
platoon and the dynamics of our vehicle can be written as

Vi(s) =

i−1∑
k=1

Hk(s)Vk(s) (25)

for some transfer functions Hk. It would be tempting to
think that string stability was ensured if ‖Hk‖∞ ≤ 1 for
all k, but we also have to take into account that there are
couplings between the other vehicles and that the disturbance
in one vehicle will propagate to the other vehicles. Instead, we
analyze the situation based on the entire platoon model (12)
by applying the control (22) and adding a velocity disturbance
δvk at vehicle number k. The closed loop system from δvk
to vi is G(s) = Ccl(sI − Acl)−1Bcl, where Acl = A − BL,
Bcl =

[
0 · · · θk ηk+1 · · · 0 −bilk 0

]T
and C is

the row vector that extracts the state for the host vehicle
velocity, ṽi. In our case, we obtained ‖G(s)‖∞ ≤ 1 for all
k for all proposed LQR controllers.

It should be remarked that the analysis on string stability
above does not guarantee stability of the real-world system.
Additional simulations and tests are required to obtain suffi-
cient confidence in the string stability in practice. In the nest
section some in-vehicle evaluations are described.
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Figure 10: Trajectories for a vehicle platoon consisting of four
vehicles. The top plot contains the velocity trajectories for
each vehicle. The host vehicle (index 4, solid black line) is
the fourth vehicle in the platoon. The lead vehicle’s velocity
trajectory (dashed blue line) has subindex 1, the second vehicle
(dotted green) has subindex 2, and the third vehicle (dashed-
dotted red) has subindex 3. The bottom shows the relative
distance between the host vehicle and the preceding vehicles,
with the subindices assigned accordingly.

F. Evaluation

When studying the behavior of vehicles in a finite platoon,
the velocity should not deviate significantly from the lead
vehicles velocity trajectory. Several race heats were conducted
in which the proposed controller performance was thoroughly
evaluated. The races consist of several different challenging
tasks and a varying number of preceding heterogeneous ve-
hicles. Data collected from one of the heats are presented in
Figure 10.

The top plot presented in Figure 10 shows the velocity
trajectories of the preceding vehicles and the host vehicle.
The bottom plot shows the relative distance between the host
vehicle and three preceding vehicles. The presented measure-
ments in the plots was received through V2V communication
and then filtered through the on-board state estimator. The first
scenario displayed between the 100 s - 140 s time span shows
the results from evaluating a common harsh braking scenario.
In this scenario the lead vehicle initiates a semi harsh braking
and then accelerates. This is then followed by a much harder
braking; a scenario common in traffic jams. The results show
that the velocities of all the follower vehicles in the platoon do
not deviate significantly compared to the lead vehicles velocity.
The intermediate spacing is also maintained and the relative
distance reference to the vehicle in front of the host vehicle
is tracked fairly accurately. The decrease in relative distance
during a deceleration is due to the time varying distance
reference. Note that the vertical lines seen in Figure 10 at the
150 s and 210 s time marker occurs due to information loss in
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Courtesy of TNO/GCDC

Figure 11: GCDC heat when the Scoop vehicle is following
directly behind the GCDC lead vehicle.

the wireless package transmission.
The entire duration of another heat is depicted in Figure 11.

In that run the Scoop vehicle was the first vehicle, directly
following the GCDC lead vehicle. Two things are clearly
visible: Fast oscillations are attenuated, (see for example
between 100 s and 150 s and after 200 s), which is a desired
stable behavior. The frequent and quite slow gear changes can
also be seen clearly, e.g. during the initial acceleration phase
and also at 180 s. This is an inherit limitation of a heavy-duty
vehicle that never can be as agile as a passenger car.

The next evaluation that is presented here is an example of
the automatic start from traffic light and the catching up and
joining of a platoon. The test is performed in the real vehicle
but the other vehicles and the traffic light are represented by
virtual simulation objects. The results are shown in Figure 12
(note that only the vehicle directly ahead is shown, not the
two leading vehicles).

When going from a green light there might be vehicles
ahead. In this test case, the truck drives on green light
and catches up with a platoon of three vehicles driving at
around 20 km/h. When the vehicle ahead is 190 m away,
the platooning role goes from ’leader’ to ’follower’ and the
controller configuration goes from 1 (leader) to 4 (fourth in
line), causing the truck to follow the three vehicles. Once the
truck catches up with the platoon ahead, the distance to the
closest vehicle varies between 13 and 21 m, even when the
platoon leader increases the speed from 20 to 30 km/h. As a
result, the truck tries to keep up with the leader and accelerates
even before the vehicle directly ahead of us does. Note that
these test were performed with an earlier version of the vehicle
tracking controller.

Finally, it will be shown how the system behaves when a
red light appears that forces the vehicle to brake and split
from the platoon. This is shown in Figure 13. Stopping at a
red light should result in two things: coming to a halt and
splitting the platoon. When the vehicle approaches the traffic
light, the system is requested to decelerate. When the vehicle
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Figure 12: Evaluation of the ability to perform automatic starts,
obey traffic light and join platoons. The test is performed in
the real vehicle but the other vehicles are virtual simulation
objects.
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Figure 13: Evaluation of the ability to stop when the traffic
light turns red and to split from the platoon. The test is
performed in the real vehicle but the other vehicles are virtual
simulation objects.

ahead reaches a relative distance of 210 m (at t = 29 s), the
platooning logic makes the decision to become platoon leader
and the controller configuration changes from 4 to 1 (i.e from
being the fourth vehicle to being the first).

VI. SUMMARY AND CONCLUSIONS

Team Scoop has developed a prototype system for coop-
erative adaptive cruise control of a heavy-duty vehicle and
successfully participated in the first edition of the Grand
Cooperative Driving Challenge. Within the project we have

1) Designed and implemented an architecture for the hard-
ware and software of the system that interfaces with the
vehicle and runs all algorithms
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2) Implemented and analyzed the communication and inter-
action protocols that enable the V2V and V2I communi-
cation

3) Designed and implemented models and algorithms for
state estimation and sensor fusion of the necessary vari-
ables of the host vehicle and of the fellow platoon
vehicles

4) Designed, implemented and analyzed algorithms for
maintaining the distance to the vehicle(s) ahead, for
automatic start and stop functionality, for automatic starts
and stops at traffic lights, and for joining and splitting of
platoons.

A. Future work

Many aspects of cooperative driving systems have been
studied in the development of our vehicle for the GCDC 2011,
but there are still many interesting issues that deserve more
attention in the future. Some suggestions are:
• Improved vehicle tracking. The LQR approach that was

used here could definitely be developed further, for exam-
ple by adding integral action on the relative distance to the
vehicle ahead. The finite-time horizon version could be
employed which would mean solving Riccati equations
online, or we could use time-varying models. Another
interesting option would be to use MPC (model predictive
control) to incorporate constraints in the optimization and
possibly also using nonlinear models.

• Improved state estimation. Digital maps and geo-
referencing techniques could be used to improve the
tracking of the own vehicle and all other traffic objects.
This should for example help in determining which lane
other vehicles are traveling in.

• Non-communicating vehicles. In a real traffic scenario
there will be non-equipped vehicles that could interfere
and that has to be handled in some way. If such a vehicle
enters a platoon, the automated vehicles must be able
to detect that and back off. The current implementation
relies on the radar for this, but perhaps it can be improved
by using camera systems.

• Truly cooperative control. In GCDC 2011, all vehicles
operated individually, based on information provided
by the other vehicles and the infrastructure. For more
advanced tasks there is the need of having negotiation
protocols that enable the vehicles to agree on which
actions are to be performed.

B. Conclusion

During the GCDC competition we have shown, together
with many of the other teams, that cooperative adaptive cruise
control is manageable and feasible for implementation in re-
alistic traffic situations. Different vehicle types, with different
and individually developed prototype systems, operate together
in what has been an excellent showcase for the potential of
cooperative mobility. We believe that our developed system
will be useful in future research projects and educational
activities at KTH and Scania and that it will serve as a
platform for our future developments of cooperative vehicular

ITS systems. In particular, we hope that it will be the starting
point for the development of a vehicle for the next Grand
Cooperative Driving Challenge.
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